March  2018, 8(1): 57-88. doi: 10.3934/mcrf.2018003

Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls

1. 

School of Mathematical Sciences, and LMNS, Fudan University, Shanghai 200433, China,

2. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

Dedicated to Professor Eduardo Casas at his 60th birthdate

Received  March 2017 Revised  October 2017 Published  January 2018

Fund Project: The first author was supported in part by NSFC grant 11371104, the second author was supported in part by NSF grant DMS-1406776.

An optimal control problem for a semilinear elliptic equation of divergenceform is considered. Both the leading term and the semilinear term of the state equationcontain the control. The well-known Pontryagin type maximum principle for the optimal controls is the first-order necessary condition. When such a first-order necessary condition is singular in some sense, certain type of the second-order necessary condition will come in naturally. The aim of this paper is to explore such kind of conditions for our optimal control problem.

Citation: Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.   Google Scholar

[2]

G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.  Google Scholar

[3]

J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, Math. Program., Ser. B, 117 (2009), 21-50.   Google Scholar

[4]

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Ann. I. H. Poincare, 26 (2009), 561-598.   Google Scholar

[5]

E. Casas, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim., 26 (1992), 21-37.   Google Scholar

[6]

E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control Optim., 50 (2012), 2355-2372.   Google Scholar

[7]

E. CasasJ. C. de Los Reye and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Optim., 19 (2008), 616-643.   Google Scholar

[8]

E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, SIAM J. Control Optim., 40 (2002), 1431-1454.   Google Scholar

[9]

E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations, Appl. Math. Optim., 39 (1999), 211-227.   Google Scholar

[10]

E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431.   Google Scholar

[11]

E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.   Google Scholar

[12]

E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: Improving results expected from abstract theory, SIAM J. Optim., 22 (2012), 261-279.   Google Scholar

[13]

E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control, Jahresber Dtsch Math-Ver, 117 (2015), 3-44.   Google Scholar

[14]

E. CasasF. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations, SIAM J. Control Optim., 38 (2000), 1369-1391.   Google Scholar

[15]

H. O. Fattorini, Relaxed controls in infinite dimensional systems, International Series of Numerical Mathematics, 100 (1991), 115-128.   Google Scholar

[16]

R. Gabasov and F. M. Kirillova, High order necessary conditions for optimality, SIAM J. Control Optim., 10 (1972), 127-168.   Google Scholar

[17]

R. Gamkrelidze, Principle of Optimal Control Theory, Plenum Press, New York, 1978.  Google Scholar

[18]

H. J. Kelly, A second variation test for singular extremals, AIAA J., 2 (1964), 1380-1382.   Google Scholar

[19]

H. W. Knobloch, Higher Order Necessary Conditions in Optimal Control Theory, Lecture Notes in Control & Inform. Sci., Springer-Verlag, New York, 1981. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[20]

R. E. Kopp and H. G. Moyer, Necessary conditions for singular extremals, AIAA J., 3 (1965), 1439-1444.   Google Scholar

[21]

A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), 256-293.   Google Scholar

[22]

B. Li and H. Lou, Optimality Conditions for semilinear hyperbolic equations with controls in coefficients, Appl. Math. Optim., 65 (2012), 371-402.   Google Scholar

[23]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.  Google Scholar

[24]

H. Lou, Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), Special Issue, 1445-1464.  Google Scholar

[25]

H. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 975-994.   Google Scholar

[26]

H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls, SIAM J. Control Optim., 48 (2009), 2366-2387.   Google Scholar

[27]

H. D. Mittelmann, Verification of second-order sufficient optimality conditions for semilinear elliptic and parabolic control problems, Comp. Optim. Appl., 20 (2001), 93-110.   Google Scholar

[28]

J. P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints, Discrete Contin. Dynam. Systems, 6 (2000), 431-450.   Google Scholar

[29]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints, SIAM J. Control Optim., 42 (2003), 138-154.   Google Scholar

[30]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, SIAM J. Optim., 17 (2006), 776-794.   Google Scholar

[31]

L. Wang and P. He, Second-order optimality conditions for optimal control problems governed by 3-dimensional Nevier-Stokes equations, Acta Math. Scientia, 26 (2006), 729-734.   Google Scholar

[32]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.  Google Scholar

[33]

A. Zygmund, Trigonometric Series, 3$^{rd}$ edition, Cambridge University Press, Cambridge, 2002.  Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.   Google Scholar

[2]

G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.  Google Scholar

[3]

J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, Math. Program., Ser. B, 117 (2009), 21-50.   Google Scholar

[4]

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Ann. I. H. Poincare, 26 (2009), 561-598.   Google Scholar

[5]

E. Casas, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim., 26 (1992), 21-37.   Google Scholar

[6]

E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control Optim., 50 (2012), 2355-2372.   Google Scholar

[7]

E. CasasJ. C. de Los Reye and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Optim., 19 (2008), 616-643.   Google Scholar

[8]

E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, SIAM J. Control Optim., 40 (2002), 1431-1454.   Google Scholar

[9]

E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations, Appl. Math. Optim., 39 (1999), 211-227.   Google Scholar

[10]

E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431.   Google Scholar

[11]

E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.   Google Scholar

[12]

E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: Improving results expected from abstract theory, SIAM J. Optim., 22 (2012), 261-279.   Google Scholar

[13]

E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control, Jahresber Dtsch Math-Ver, 117 (2015), 3-44.   Google Scholar

[14]

E. CasasF. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations, SIAM J. Control Optim., 38 (2000), 1369-1391.   Google Scholar

[15]

H. O. Fattorini, Relaxed controls in infinite dimensional systems, International Series of Numerical Mathematics, 100 (1991), 115-128.   Google Scholar

[16]

R. Gabasov and F. M. Kirillova, High order necessary conditions for optimality, SIAM J. Control Optim., 10 (1972), 127-168.   Google Scholar

[17]

R. Gamkrelidze, Principle of Optimal Control Theory, Plenum Press, New York, 1978.  Google Scholar

[18]

H. J. Kelly, A second variation test for singular extremals, AIAA J., 2 (1964), 1380-1382.   Google Scholar

[19]

H. W. Knobloch, Higher Order Necessary Conditions in Optimal Control Theory, Lecture Notes in Control & Inform. Sci., Springer-Verlag, New York, 1981. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[20]

R. E. Kopp and H. G. Moyer, Necessary conditions for singular extremals, AIAA J., 3 (1965), 1439-1444.   Google Scholar

[21]

A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), 256-293.   Google Scholar

[22]

B. Li and H. Lou, Optimality Conditions for semilinear hyperbolic equations with controls in coefficients, Appl. Math. Optim., 65 (2012), 371-402.   Google Scholar

[23]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.  Google Scholar

[24]

H. Lou, Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), Special Issue, 1445-1464.  Google Scholar

[25]

H. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 975-994.   Google Scholar

[26]

H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls, SIAM J. Control Optim., 48 (2009), 2366-2387.   Google Scholar

[27]

H. D. Mittelmann, Verification of second-order sufficient optimality conditions for semilinear elliptic and parabolic control problems, Comp. Optim. Appl., 20 (2001), 93-110.   Google Scholar

[28]

J. P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints, Discrete Contin. Dynam. Systems, 6 (2000), 431-450.   Google Scholar

[29]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints, SIAM J. Control Optim., 42 (2003), 138-154.   Google Scholar

[30]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, SIAM J. Optim., 17 (2006), 776-794.   Google Scholar

[31]

L. Wang and P. He, Second-order optimality conditions for optimal control problems governed by 3-dimensional Nevier-Stokes equations, Acta Math. Scientia, 26 (2006), 729-734.   Google Scholar

[32]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.  Google Scholar

[33]

A. Zygmund, Trigonometric Series, 3$^{rd}$ edition, Cambridge University Press, Cambridge, 2002.  Google Scholar

[1]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[2]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[3]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[8]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[13]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[14]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[15]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[18]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[19]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[20]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (133)
  • HTML views (257)
  • Cited by (2)

Other articles
by authors

[Back to Top]