[1]
|
J. Belmonte, G. F. Calvo and V. M. Pérez-García, Effective particle methods for front solutions of the Fischer-Kolmogorov equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3267-3283.
|
[2]
|
R. H. Byrd, J. C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, 89 (2000), 149-185.
|
[3]
|
R. H. Byrd, M. E. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900.
|
[4]
|
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1990.
|
[5]
|
I. Ekeland and R. Témam,
Convex Analysis and Variational Problems Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
|
[6]
|
E. Fernández-Cara and G. Camacho-Vázquez, Optimal control of some simplified models of tumour growth, International Journal of Control, 84 (2011), 540-550.
|
[7]
|
E. Fernández-Cara and L. Prouvée, Optimal control of mathematical models for the radiotherapy of gliomas: The scalar case Comp. Appl. Math. (2016), https://doi.org/10.1007/s40314-016-0366-0.
doi: 10.1007/s40314-016-0366-0.
|
[8]
|
R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, 1987.
|
[9]
|
A. V. Fursikov,
Optimal Control of Distributed Systems. Theory and Applications Translations of Mathematical Monographs, 187. American Mathematical Society, Providence, RI, 2000.
|
[10]
|
T. Galochkina, A. Bratus and V. M. Pérez-García, Optimal radiotherapy protocols for low-grade gliomas: Insights from a mathematical model, Math. Biosci., 267 (2015), 1-9.
|
[11]
|
M. D. Gunzburger,
Perspectives in Flow Control and Optimization Society for Industrial and Applied Mathematics, Philadelphia, 2003.
|
[12]
|
J. -L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag, Grundelhren Der Mathematishen Wissenschaften Series, vol. 170,1971.
|
[13]
|
A. Martínez-González, G. F. Calvo, L. Pérez-Romansanta and V. M. Pérez-García, Hypoxic Cell Waves around Necrotic Cores in Gliobastoma: A Biomathematical Model and its Therapeutic implications, Bull Math Biol., 74 (2012), 2875-2896.
|
[14]
|
J. Nocedal and S. J. Wright,
Numerical Optimization, Second Edition, Springer Series in Operations Research, Springer, New York, 2006.
|
[15]
|
J. Pallud, L. Taillander, L. Capelle, D. Fontaine, M. Peyre, F. Ducray, H. Duffau and E. Mandonnet, Quantitative morphological mri follow-up of low-grade glioma: A plead for systematic measurement of growth rates, Neurosurgery, 71 (2012), 729-740.
|
[16]
|
J. Pallud, J. F. Llitjos, F. Dhermain, P. Varlet, E. Dezamis, B. Devaux, R. Souillard-Scemama, N. Sanai, M. Koziak, P. Page, M. Schlienger, C. Daumas-Duport, J. F. Meder, C. Oppenheim and F. X. Roux, Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas, Neuro-Oncology, 14 (2012), 496-505.
|
[17]
|
V. M. Pérez-García, Mathematical Models for the Radiotherapy of Gliomas, (preprint), 2012.
|
[18]
|
V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego and L. Pérez-Romansanta, Bright solitary waves in malignant gliomas, Phys. Rev. E, 84 (2011), 021921.
|
[19]
|
V. M. Pérez-García and A. Martínez-González, Hypoxic ghost waves accelerate the progression of high-grade gliomas, J. Theor. Biol., (to appear. ), 2012.
|
[20]
|
V. M. Pérez-García, M. Bogdanska, A. Martínez-González, J. Belmonte-Beitia, Ph. Schucht and L. A. Pérez-Romasanta, Delay effects in the response of low grade gliomas to radiotherapy: A mathematical model and its therapeutical implications, Math. Med. Biol., 32 (2015), 307-329.
|
[21]
|
L. A. Pérez-Romansanta, J. Belmonte-Beitia, A. Martínez-González, G. F. Calvo and V. M. Pérez-García, Mathematical model predicts response to radiotherapy of grade Ⅱ gliomas, Reports of Practical Oncology and Radiotherapy, 18 (2013), S63.
|
[22]
|
L. Prouvée,
Optimal Control of Mathematical Models for the Radiotherapy of Gliomas PhD Thesis, 2015.
|
[23]
|
R. A. Waltz, J. L. Morales, J. Nocedal and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Mathematical Programming, 107 (2006), 391-408.
|