\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal control of a two-equation model of radiotherapy

  • * Corresponding author

    * Corresponding author 
The first author was partially supported by grant MTM2016-76990-P, DGI-MINECO, Spain.
The third author was partially supported by CAPES Foundation, BEX 7446/13-6, Ministry of Education of Brazil.
Abstract / Introduction Full Text(HTML) Figure(10) / Table(1) Related Papers Cited by
  • This paper deals with the optimal control of a mathematical model for the evolution of a low-grade glioma (LGG). We will consider a model of the Fischer-Kolmogorov kind for two compartments of tumor cells, using ideas from Galochkina, Bratus and Pérez-García [10] and Pérez-García [17]. The controls are of the form $(t_1, \dots, t_n; d_1, \dots, d_n)$, where $t_i$ is the $i$-th administration time and $d_i$ is the $i$-th applied radiotherapy dose. In the optimal control problem, we try to find controls that maximize, in an admissible class, the first time at which the tumor mass reaches a critical value $M_{*}$. We present an existence result and, also, some numerical experiments (in the previous paper [7], we have considered and solved a very similar control problem where tumoral cells of only one kind appear).

    Mathematics Subject Classification: Primary: 49J20, 35K20; Secondary: 92C50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The optimal 30 doses -IP algorithm

    Figure 2.  Evolution of the tumor size -30 Doses

    Figure 3.  The density of tumor cells (3D global view) -30 Doses

    Figure 4.  The optimal 30 doses -SQP algorithm

    Figure 5.  The optimal 40 doses -IP algorithm

    Figure 6.  The density of tumor cells (3D global view) -40 Doses

    Figure 7.  The optimal 40 doses -SQP algorithm

    Figure 8.  The optimal 60 doses -IP algorithm

    Figure 9.  The density of tumor cells (3D global view) -60 Doses

    Figure 10.  The optimal 60 doses -SQP algorithm

    Table 1.  The survival times corresponding to IP, SQP and $d_j = d_{\rm st}$

    Experiment IP SQP $d_{\rm st}$ $d_{\rm max}$
    30 doses 214 days 213 days 196 days 212 days
    40 doses 254 days 251 days 238 days 250 days
    60 doses 358 days 353 days 321 days 350 days
     | Show Table
    DownLoad: CSV
  • [1] J. BelmonteG. F. Calvo and V. M. Pérez-García, Effective particle methods for front solutions of the Fischer-Kolmogorov equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3267-3283. 
    [2] R. H. ByrdJ. C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, 89 (2000), 149-185. 
    [3] R. H. ByrdM. E. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900. 
    [4] R. Dautray and  J.-L. LionsMathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1990. 
    [5] I. Ekeland and R. Témam, Convex Analysis and Variational Problems Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
    [6] E. Fernández-Cara and G. Camacho-Vázquez, Optimal control of some simplified models of tumour growth, International Journal of Control, 84 (2011), 540-550. 
    [7] E. Fernández-Cara and L. Prouvée, Optimal control of mathematical models for the radiotherapy of gliomas: The scalar case Comp. Appl. Math. (2016), https://doi.org/10.1007/s40314-016-0366-0. doi: 10.1007/s40314-016-0366-0.
    [8] R. FletcherPractical Methods of Optimization, John Wiley and Sons, 1987. 
    [9] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications Translations of Mathematical Monographs, 187. American Mathematical Society, Providence, RI, 2000.
    [10] T. GalochkinaA. Bratus and V. M. Pérez-García, Optimal radiotherapy protocols for low-grade gliomas: Insights from a mathematical model, Math. Biosci., 267 (2015), 1-9. 
    [11] M. D. Gunzburger, Perspectives in Flow Control and Optimization Society for Industrial and Applied Mathematics, Philadelphia, 2003.
    [12] J. -L. Lions, Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag, Grundelhren Der Mathematishen Wissenschaften Series, vol. 170,1971.
    [13] A. Martínez-GonzálezG. F. CalvoL. Pérez-Romansanta and V. M. Pérez-García, Hypoxic Cell Waves around Necrotic Cores in Gliobastoma: A Biomathematical Model and its Therapeutic implications, Bull Math Biol., 74 (2012), 2875-2896. 
    [14] J. Nocedal and S. J. Wright, Numerical Optimization, Second Edition, Springer Series in Operations Research, Springer, New York, 2006.
    [15] J. PalludL. TaillanderL. CapelleD. FontaineM. PeyreF. DucrayH. Duffau and E. Mandonnet, Quantitative morphological mri follow-up of low-grade glioma: A plead for systematic measurement of growth rates, Neurosurgery, 71 (2012), 729-740. 
    [16] J. PalludJ. F. LlitjosF. DhermainP. VarletE. DezamisB. DevauxR. Souillard-ScemamaN. SanaiM. KoziakP. PageM. SchliengerC. Daumas-DuportJ. F. MederC. Oppenheim and F. X. Roux, Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas, Neuro-Oncology, 14 (2012), 496-505. 
    [17] V. M. Pérez-García, Mathematical Models for the Radiotherapy of Gliomas, (preprint), 2012.
    [18] V. M. Pérez-GarcíaG. F. CalvoJ. Belmonte-BeitiaD. Diego and L. Pérez-Romansanta, Bright solitary waves in malignant gliomas, Phys. Rev. E, 84 (2011), 021921. 
    [19] V. M. Pérez-García and A. Martínez-González, Hypoxic ghost waves accelerate the progression of high-grade gliomas, J. Theor. Biol., (to appear. ), 2012.
    [20] V. M. Pérez-GarcíaM. BogdanskaA. Martínez-GonzálezJ. Belmonte-BeitiaPh. Schucht and L. A. Pérez-Romasanta, Delay effects in the response of low grade gliomas to radiotherapy: A mathematical model and its therapeutical implications, Math. Med. Biol., 32 (2015), 307-329. 
    [21] L. A. Pérez-Romansanta, J. Belmonte-Beitia, A. Martínez-González, G. F. Calvo and V. M. Pérez-García, Mathematical model predicts response to radiotherapy of grade Ⅱ gliomas, Reports of Practical Oncology and Radiotherapy, 18 (2013), S63.
    [22] L. Prouvée, Optimal Control of Mathematical Models for the Radiotherapy of Gliomas PhD Thesis, 2015.
    [23] R. A. WaltzJ. L. MoralesJ. Nocedal and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Mathematical Programming, 107 (2006), 391-408. 
  • 加载中

Figures(10)

Tables(1)

SHARE

Article Metrics

HTML views(2288) PDF downloads(272) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return