\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Compact perturbations of controlled systems

  • * Corresponding author: Guillaume Olive

    * Corresponding author: Guillaume Olive
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this article we study the controllability properties of general compactly perturbed exactly controlled linear systems with admissible control operators. Firstly, we show that approximate and exact controllability are equivalent properties for such systems. Then, and more importantly, we provide for the perturbed system a complete characterization of the set of reachable states in terms of the Fattorini-Hautus test. The results rely on the Peetre lemma.

    Mathematics Subject Classification: Primary: 93B05, 93C73; Secondary: 93C73.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.
    [2] C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.
    [3] F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields, 4 (2014), 263-287.  doi: 10.3934/mcrf.2014.4.263.
    [4] N. Cȋndea and M. Tucsnak, Internal exact observability of a perturbed Euler-Bernoulli equation, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2 (2010), 205-221. 
    [5] J.-M. CoronL. Hu and G. Olive, Stabilization and controllability of first-order integro-differential hyperbolic equations, J. Funct. Anal., 271 (2016), 3554-3587.  doi: 10.1016/j.jfa.2016.08.018.
    [6] K. -L. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
    [7] H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694.  doi: 10.1137/0304048.
    [8] E. Fernández-CaraQ. Lü and E. Zuazua, Null controllability of linear heat and wave equations with nonlocal spatial terms, SIAM J. Control Optim., 54 (2016), 2009-2019.  doi: 10.1137/15M1044291.
    [9] S. Hadd, Unbounded perturbations of C0-semigroups on Banach spaces and applications, Semigroup Forum, 70 (2005), 451-465.  doi: 10.1007/s00233-004-0172-7.
    [10] V. Komornik, Exact Controllability and Stabilization, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, The multiplier method.
    [11] V. Komornik and P. Loreti, Observability of compactly perturbed systems, J. Math. Anal. Appl., 243 (2000), 409-428.  doi: 10.1006/jmaa.1999.6678.
    [12] I. Lasiecka and R. Triggiani, Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument, Discrete Contin. Dyn. Syst., (2005), 556-565.  doi: 10.1006/jmaa.1999.6678.
    [13] C. Laurent, Internal control of the Schrödinger equation, Math. Control Relat. Fields, 4 (2014), 161-186.  doi: 10.3934/mcrf.2014.4.161.
    [14] T. Li and B. Rao, Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls, Chin. Ann. Math. Ser. B, 38 (2017), 473-488.  doi: 10.1007/s11401-017-1078-5.
    [15] J. -L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988, Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.
    [16] M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar., 103 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.
    [17] A. F. NevesH. d. S. Ribeiro and O. Lopes, On the spectrum of evolution operators generated by hyperbolic systems, J. Funct. Anal., 67 (1986), 320-344.  doi: 10.1016/0022-1236(86)90029-7.
    [18] J. Peetre, Another approach to elliptic boundary problems, Comm. Pure Appl. Math., 14 (1961), 711-731.  doi: 10.1002/cpa.3160140404.
    [19] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86.  doi: 10.1512/iumj.1975.24.24004.
    [20] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.
    [21] R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optimization, 15 (1977), 407-411.  doi: 10.1137/0315028.
    [22] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
    [23] E. Zuazua, Contrôlabilité exacte d'un modèle de plaques vibrantes en un temps arbitrairement petit, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987), 173-176. 
    [24] E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987-1988), vol. 220 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1991,357-391.
  • 加载中
SHARE

Article Metrics

HTML views(2016) PDF downloads(304) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return