In this paper, we study the generalized mean-field stochastic control problem when the usual stochastic maximum principle (SMP) is not applicable due to the singularity of the Hamiltonian function. In this case, we derive a second order SMP. We introduce the adjoint process by the generalized mean-field backward stochastic differential equation. The keys in the proofs are the expansion of the cost functional in terms of a perturbation parameter, and the use of the range theorem for vector-valued measures.
Citation: |
[1] |
V. Arkin and I. Saksonov, Necessary optimality conditions of optimality in the problems of control of stochastic differential-equations, Doklady Akademii Nauk SSSR., 244 (1979), 11-15.
![]() ![]() |
[2] |
D. J. Bell and D. H. Jacobson,
Singular Optimal Control Problems, Vol. 117. Elsevier, 1975.
![]() ![]() |
[3] |
A. Bensoussan, Lectures on stochastic control, Nonlinear Filtering and Stochastic Control, 972 (1982), 1-62.
doi: 10.1007/BFb0064859.![]() ![]() ![]() |
[4] |
J. M. Bismut, An introductory approach to duality in optimal stochastic control, SIAM Review, 20 (1978), 62-78.
doi: 10.1137/1020004.![]() ![]() ![]() |
[5] |
R. Buckdahn, J. Li and J. Ma, A stochastic maximum principle for general mean-field systems, Applied Mathematics and Optimization, 74 (2016), 507-534.
doi: 10.1007/s00245-016-9394-9.![]() ![]() ![]() |
[6] |
R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Proc. App., 19 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002.![]() ![]() ![]() |
[7] |
R. Buckdahn, J. Li, S. Peng and C. Rainer, Mean-field stochastic differential equations and associated PDEs, Ann. Probab., 45 (2017), 824-878.
doi: 10.1214/15-AOP1076.![]() ![]() ![]() |
[8] |
P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, Analysis and Geometry in Control Theory and its Applications, 11 (2015), 111-158.
doi: 10.1007/978-3-319-06917-3_5.![]() ![]() ![]() |
[9] |
R. Gabasov and F. M. Kirillova, High order necessary conditions for optimality, SIAM J. Control, 10 (1972), 127-168.
doi: 10.1137/0310012.![]() ![]() ![]() |
[10] |
U. G. Haussmann, A Stochastic Maximum Principle for Optimal Control of Diffusions, Essex, UK: Longman Scientific and Technical, 1986.
doi: 10. 1007/BF00047571.![]() ![]() ![]() |
[11] |
U. G. Haussmann, General necessary conditions for optimal control of stochastic systems, Math. Program. Study, 6 (1976), 30-48.
doi: 10.1007/BFb0120743.![]() ![]() ![]() |
[12] |
M. A. Kazemi-Dehkordi, Necessary conditions for optimality of singular controls, J. Optim. Theor. Appl., 43 (1984), 629-637.
doi: 10.1007/BF00935010.![]() ![]() ![]() |
[13] |
A. J. Krener, The high-order maximum principle and its application to singular extremals, SIAM J. Control, 15 (1977), 256-293.
doi: 10.1137/0315019.![]() ![]() ![]() |
[14] |
H. J. Kushner, On the stochastic maximum principle: Fixed time of control, Journal of Mathematical Analysis and Applications, 11 (1965), 78-92.
doi: 10.1016/0022-247X(65)90070-3.![]() ![]() ![]() |
[15] |
H. J. Kushner, Necessary conditions for continuous parameter stochastic optimization problems, SIAM Journal of Control, 10 (1972), 550-565.
doi: 10.1137/0310041.![]() ![]() ![]() |
[16] |
J. Li, Stochastic maximum principle in the mean-field controls, Automatica, 48 (2012), 366-373.
doi: 10.1016/j.automatica.2011.11.006.![]() ![]() ![]() |
[17] |
Q. Lü, Second order necessary conditions for optimal control problems of stochastic evolution equations, Control Conference (CCC), 2016 35th Chinese. IEEE, (2016), 2620-2625.
doi: 10.1109/ChiCC.2016.7553759.![]() ![]() |
[18] |
K. Mizukami and H. Wu, New necessary conditions for optimality of singular controls in optimal control problems, Int. J. Systems Sci., 23 (1992), 1335-1345.
doi: 10.1080/00207729208949387.![]() ![]() ![]() |
[19] |
L. Mou and J. Yong, A variational formula for stochastic controls and some applications, Pure Appl. Math. Q, 3 (2007), 539-567.
doi: 10.4310/PAMQ.2007.v3.n2.a7.![]() ![]() ![]() |
[20] |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6.![]() ![]() ![]() |
[21] |
S. Peng, A general stochastic maximum principle for optimal control problem, SIAM J. Control and Optimization, 28 (1990), 966-979.
doi: 10.1137/0328054.![]() ![]() ![]() |
[22] |
L. S. Pontrvagin,
Mathematical Theory of Optimal Processes, CRC Press, 1987.
![]() |
[23] |
S. J. Tang, A second-order maximum principle for singular optimal stochastic controls, Discrete and Continuous Dynamical System Series B, 14 (2010), 1581-1599.
doi: 10.3934/dcdsb.2010.14.1581.![]() ![]() ![]() |
[24] |
J. Yong and X. Y. Zhou,
Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
![]() ![]() |
[25] |
H. Zhang and X. Zhang, Pointwise second-order necessary conditions for stochastic optimal controls, Part Ⅰ: The case of convex control constraint, SIAM Journal on Control and Optimization, 53 (2015), 2267-2296.
doi: 10.1137/14098627X.![]() ![]() ![]() |