Advanced Search
Article Contents
Article Contents

Necessary conditions for infinite horizon optimal control problems with state constraints

The research of third author benefited from the support of the FMJH Program Gaspard Monge in optimization and operation research, and from the support to this program from EDF under the grant PGMO 2015-2832H

Abstract Full Text(HTML) Related Papers Cited by
  • Partial and full sensitivity relations are obtained for nonauto-nomous optimal control problems with infinite horizon subject to state constraints, assuming the associated value function to be locally Lipschitz in the state. Sufficient structural conditions are given to ensure such a Lipschitz regularity in presence of a positive discount factor, as it is typical of macroeconomics models.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   K. Arrow  and  M. Kurz , Optimal growth with irreversible investment in a Ramsey model, Econometrica, 38 (1970) , 331-344.  doi: 10.2307/1913014.
      S. M. Aseev , On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Tr. Inst. Mat. Mekh., 19 (2013) , 15-24. 
      S. M. Aseev  and  V. M. Veliov , Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Tr. Inst. Mat. Mekh., 20 (2014) , 41-57. 
      J.-P. Aubin and H. Frankowska, Set-valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0.
      V. Basco and H. Frankowska, Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints, (submitted).
      J. P. Bénassy, Macroeconomic Theory, Oxford University Press, 2010.
      L. M. Benveniste  and  J. A. Scheinkman , Duality theory for dynamic optimization models of economics: the continuous time case, J. Econom. Theory, 27 (1982) , 1-19.  doi: 10.1016/0022-0531(82)90012-6.
      P. Bettiol , H. Frankowska  and  R. B. Vinter , Improved sensitivity relations in state constrained optimal control, Appl. Math. Optim., 71 (2015) , 353-377.  doi: 10.1007/s00245-014-9260-6.
      O. J. Blanchard and S. Fischer, Lectures on Macroeconomics, MIT press, 1989.
      P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser Boston, Inc., Boston, MA, 2004.
      A. Cernea  and  H. Frankowska , A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005) , 673-703.  doi: 10.1137/S0363012903430585.
      H. Frankowska  and  M. Mazzola , On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differential Equations Appl., 20 (2013) , 361-383.  doi: 10.1007/s00030-012-0183-0.
      P. Loreti  and  M. E. Tessitore , Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, J. Math. Systems Estim. Control, 4 (1994) , 467-483. 
      F. P. Ramsey , A mathematical theory of saving, The Economic Journal, 38 (1928) , 543-559.  doi: 10.2307/2224098.
      R. T. Rockafellar and R. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.
      A. Seierstad , Necessary conditions for nonsmooth, infinite-horizon, optimal control problems, J. Optim. Theory Appl., 103 (1999) , 201-229.  doi: 10.1023/A:1021733719020.
      A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications, North-Holland Publishing Co., Amsterdam, 1987.
      G. Sorger , On the long-run distribution of capital in the Ramsey model, J. Econom. Theory, 105 (2002) , 226-243.  doi: 10.1006/jeth.2001.2841.
      R. Vinter, Optimal Control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. doi: 10.1007/978-0-8176-8086-2.
  • 加载中

Article Metrics

HTML views(378) PDF downloads(230) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint