September  2018, 8(3&4): 535-555. doi: 10.3934/mcrf.2018022

Necessary conditions for infinite horizon optimal control problems with state constraints

1. 

Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 1 - 00133 Roma, Italy

2. 

IMJ-PRG, UMR 7586 CNRS, Sorbonne Université, case 247, 4 place Jussieu, 75252 Paris, France

Received  November 2017 Revised  January 2018 Published  September 2018

Fund Project: The research of third author benefited from the support of the FMJH Program Gaspard Monge in optimization and operation research, and from the support to this program from EDF under the grant PGMO 2015-2832H.

Partial and full sensitivity relations are obtained for nonauto-nomous optimal control problems with infinite horizon subject to state constraints, assuming the associated value function to be locally Lipschitz in the state. Sufficient structural conditions are given to ensure such a Lipschitz regularity in presence of a positive discount factor, as it is typical of macroeconomics models.

Citation: Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022
References:
[1]

K. Arrow and M. Kurz, Optimal growth with irreversible investment in a Ramsey model, Econometrica, 38 (1970), 331-344.  doi: 10.2307/1913014.  Google Scholar

[2]

S. M. Aseev, On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Tr. Inst. Mat. Mekh., 19 (2013), 15-24.   Google Scholar

[3]

S. M. Aseev and V. M. Veliov, Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Tr. Inst. Mat. Mekh., 20 (2014), 41-57.   Google Scholar

[4]

J.-P. Aubin and H. Frankowska, Set-valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[5]

V. Basco and H. Frankowska, Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints, (submitted). Google Scholar

[6]

J. P. Bénassy, Macroeconomic Theory, Oxford University Press, 2010. Google Scholar

[7]

L. M. Benveniste and J. A. Scheinkman, Duality theory for dynamic optimization models of economics: the continuous time case, J. Econom. Theory, 27 (1982), 1-19.  doi: 10.1016/0022-0531(82)90012-6.  Google Scholar

[8]

P. BettiolH. Frankowska and R. B. Vinter, Improved sensitivity relations in state constrained optimal control, Appl. Math. Optim., 71 (2015), 353-377.  doi: 10.1007/s00245-014-9260-6.  Google Scholar

[9]

O. J. Blanchard and S. Fischer, Lectures on Macroeconomics, MIT press, 1989. Google Scholar

[10]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser Boston, Inc., Boston, MA, 2004.  Google Scholar

[11]

A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703.  doi: 10.1137/S0363012903430585.  Google Scholar

[12]

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differential Equations Appl., 20 (2013), 361-383.  doi: 10.1007/s00030-012-0183-0.  Google Scholar

[13]

P. Loreti and M. E. Tessitore, Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, J. Math. Systems Estim. Control, 4 (1994), 467-483.   Google Scholar

[14]

F. P. Ramsey, A mathematical theory of saving, The Economic Journal, 38 (1928), 543-559.  doi: 10.2307/2224098.  Google Scholar

[15]

R. T. Rockafellar and R. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[16]

A. Seierstad, Necessary conditions for nonsmooth, infinite-horizon, optimal control problems, J. Optim. Theory Appl., 103 (1999), 201-229.  doi: 10.1023/A:1021733719020.  Google Scholar

[17]

A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications, North-Holland Publishing Co., Amsterdam, 1987.  Google Scholar

[18]

G. Sorger, On the long-run distribution of capital in the Ramsey model, J. Econom. Theory, 105 (2002), 226-243.  doi: 10.1006/jeth.2001.2841.  Google Scholar

[19]

R. Vinter, Optimal Control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. doi: 10.1007/978-0-8176-8086-2.  Google Scholar

show all references

References:
[1]

K. Arrow and M. Kurz, Optimal growth with irreversible investment in a Ramsey model, Econometrica, 38 (1970), 331-344.  doi: 10.2307/1913014.  Google Scholar

[2]

S. M. Aseev, On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Tr. Inst. Mat. Mekh., 19 (2013), 15-24.   Google Scholar

[3]

S. M. Aseev and V. M. Veliov, Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Tr. Inst. Mat. Mekh., 20 (2014), 41-57.   Google Scholar

[4]

J.-P. Aubin and H. Frankowska, Set-valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[5]

V. Basco and H. Frankowska, Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints, (submitted). Google Scholar

[6]

J. P. Bénassy, Macroeconomic Theory, Oxford University Press, 2010. Google Scholar

[7]

L. M. Benveniste and J. A. Scheinkman, Duality theory for dynamic optimization models of economics: the continuous time case, J. Econom. Theory, 27 (1982), 1-19.  doi: 10.1016/0022-0531(82)90012-6.  Google Scholar

[8]

P. BettiolH. Frankowska and R. B. Vinter, Improved sensitivity relations in state constrained optimal control, Appl. Math. Optim., 71 (2015), 353-377.  doi: 10.1007/s00245-014-9260-6.  Google Scholar

[9]

O. J. Blanchard and S. Fischer, Lectures on Macroeconomics, MIT press, 1989. Google Scholar

[10]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser Boston, Inc., Boston, MA, 2004.  Google Scholar

[11]

A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703.  doi: 10.1137/S0363012903430585.  Google Scholar

[12]

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differential Equations Appl., 20 (2013), 361-383.  doi: 10.1007/s00030-012-0183-0.  Google Scholar

[13]

P. Loreti and M. E. Tessitore, Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, J. Math. Systems Estim. Control, 4 (1994), 467-483.   Google Scholar

[14]

F. P. Ramsey, A mathematical theory of saving, The Economic Journal, 38 (1928), 543-559.  doi: 10.2307/2224098.  Google Scholar

[15]

R. T. Rockafellar and R. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[16]

A. Seierstad, Necessary conditions for nonsmooth, infinite-horizon, optimal control problems, J. Optim. Theory Appl., 103 (1999), 201-229.  doi: 10.1023/A:1021733719020.  Google Scholar

[17]

A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications, North-Holland Publishing Co., Amsterdam, 1987.  Google Scholar

[18]

G. Sorger, On the long-run distribution of capital in the Ramsey model, J. Econom. Theory, 105 (2002), 226-243.  doi: 10.1006/jeth.2001.2841.  Google Scholar

[19]

R. Vinter, Optimal Control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. doi: 10.1007/978-0-8176-8086-2.  Google Scholar

[1]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[2]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[3]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[4]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[5]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[6]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[9]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[10]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[14]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[15]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[16]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[17]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[18]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[19]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[20]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (127)
  • HTML views (303)
  • Cited by (3)

[Back to Top]