[1]
|
C. Aguilar and A. Krener, Numerical solutions to the Bellman equation of optimal control, Journal of Optimization Theory and Applications, 160 (2014), 527-552.
doi: 10.1007/s10957-013-0403-8.
|
[2]
|
A. Alla and M. Falcone, An adaptive pod approximation method for the control of advectiondiffusion equations, in Control and Optimization with PDE Constraints (eds. K. Bredies, C. Clason, K. Kunisch and G. von Winckel), Springer Basel, Basel, 2013, 1-17.
doi: 10.1007/978-3-0348-0631-2_1.
|
[3]
|
F. Ancona and A. Bressan, Flow stability of patchy vector fields and robust feedback stabilization, SIAM Journal on Control and Optimization, 41 (2002), 1455-1476.
doi: 10.1137/S0363012901391676.
|
[4]
|
M. Badra, Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations, SIAM Journal on Control and Optimization, 48 (2009), 1797-1830.
doi: 10.1137/070682630.
|
[5]
|
P. Benner, T. Breiten, C. Hartmann and B. Schmidt, Model Reduction of Controlled Fokker-Planck and Liouville-von Neumann Equations, Technical report, 2017, Available from https://arXiv.org/abs/1706.09882.
|
[6]
|
P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems, SIAM Journal on Control and Optimization, 49 (2011), 686-711.
doi: 10.1137/09075041X.
|
[7]
|
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Birkhäuser Boston Basel Berlin, 2007.
doi: 10.1007/978-0-8176-4581-6.
|
[8]
|
T. Breiten, K. Kunisch and L. Pfeiffer, Control strategies for the Fokker-Planck equation, ESAIM: Control, Optimisation and Calculus of Variations, 24 (2018), 741-763.
doi: 10.1051/cocv/2017046.
|
[9]
|
T. Breiten, K. Kunisch and L. Pfeiffer, Taylor Expansions for the HJB Equation Associated with a Bilinear Control Problem, Technical report, SFB-Report 2017-006, 2017, Available from http://imsc.uni-graz.at/mobis/publications/SFB-Report-2017-006_v2.pdf.
|
[10]
|
E. Carlini and F.J. Silva, On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications, SIAM J. Numer. Anal., 56 (2018), 2148-2177.
doi: 10.1137/17M1143022.
|
[11]
|
J. Chang and G. Cooper, A practical scheme for Fokker--Planck equations, Journal of Computational Physics, 6 (1970), 1-16.
|
[12]
|
T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, Numerical Linear Algebra with Applications, 15 (2008), 853-871.
doi: 10.1002/nla.603.
|
[13]
|
L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure, Computing, 72 (2004), 247-265.
doi: 10.1007/s00607-003-0037-z.
|
[14]
|
K. Ito and S. Ravindran, A reduced-order method for simulation and control of fluid flows, Journal of Computational Physics, 143 (1998), 403-425, URL http://www.sciencedirect.com/science/article/pii/S0021999198959435.
doi: 10.1006/jcph.1998.5943.
|
[15]
|
D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs, SIAM J. Sci. Comput., 40 (2018), A629-A652.
doi: 10.1137/17M1116635.
|
[16]
|
A. Krener, C. Aguilar and T. Hunt, Mathematical system theory - festschrift in honor of uwe helmke on the occasion of his sixtieth birthday, CreateSpace, Chapter Series Solutions of HJB Equations, (2013), 247-260.
|
[17]
|
K. Kunisch, S. Volkwein and L. Xie, HJB-POD-based feedback design for the optimal control of evolution problems, SIAM Journal on Applied Dynamical Systems, 3 (2004), 701-722.
doi: 10.1137/030600485.
|
[18]
|
B.J. Matkowsky and Z. Schuss, Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields, SIAM Journal on Applied Mathematics, 40 (1981), 242-254.
doi: 10.1137/0140020.
|
[19]
|
M. Opmeer, Decay of Hankel singular values of analytic control systems, Systems & Control Letters, 59 (2010), 635-638.
doi: 10.1016/j.sysconle.2010.07.009.
|
[20]
|
J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier--Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 790-828.
doi: 10.1137/050628726.
|