September  2018, 8(3&4): 809-828. doi: 10.3934/mcrf.2018036

Optimal control problems for some ordinary differential equations with behavior of blowup or quenching

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

2. 

Mathematics & Science College, Shanghai Normal University, Shanghai 200234, China

* Corresponding author: Weihan Wang

Received  October 2017 Revised  January 2018 Published  September 2018

Fund Project: This work was supported in part by National Natural Science Foundation of China under grant 11701376 and 11471070, and School Foundation of Shanghai Normal University under grant SK201713.

This paper is concerned with some optimal control problems for equations with blowup or quenching property. We first study the existence and Pontryagin's maximum principle for optimal controls which have the minimal energy among all the controls whose corresponding solutions blow up at the right-hand time end-point of a given functional. Then, the same problem for quenching case is discussed. Finally, we establish Pontryagin's maximum principle for optimal controls of extended problems after quenching.

Citation: Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036
References:
[1]

H. Amann and P. Quittner, Optimal control problems with final observation governed by explosive parabolic equations, SIAM J. Control Optim., 44 (2005), 1215-1238.  doi: 10.1137/S0363012903433450.  Google Scholar

[2]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[3]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22.  doi: 10.1016/S0377-0427(98)00100-9.  Google Scholar

[4]

E. N. Barron and W. Liu, Optimal control of the blowup time, SIAM J. Control Optim., 34 (1996), 102-123.  doi: 10.1137/S0363012993245021.  Google Scholar

[5]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20 (1989), 558-566.  doi: 10.1137/0520039.  Google Scholar

[6]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations, 89 (1991), 176-202.  doi: 10.1016/0022-0396(91)90118-S.  Google Scholar

[7]

H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[8]

R. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203.  doi: 10.1007/BF01213863.  Google Scholar

[9]

J.-S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edinburgh Math. Soc., 40 (1997), 437-456.  doi: 10.1017/S0013091500023932.  Google Scholar

[10]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.  Google Scholar

[11]

H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1/(1 − u), Publ. Res. Inst. Math. Sci., 10 (1974/75), 729-736.  doi: 10.2977/prims/1195191889.  Google Scholar

[12]

X. Li and J. Yong, Optimal Control Theory for Infinite-dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[13]

P. Lin, Quenching time optimal control for some ordinary differential equations, J. Appl. Math., 2014 (2014), Art. ID 127809, 13 pages. doi: 10.1155/2014/127809.  Google Scholar

[14]

P. Lin, Extendability and optimal control after quenching for some ordinary differential equations, J. Optim. Theory Appl., 168 (2016), 769-784.  doi: 10.1007/s10957-015-0858-x.  Google Scholar

[15]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[16]

P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.  doi: 10.1016/j.matpur.2013.06.001.  Google Scholar

[17]

J.-L. Lions, Contrôle des Systèmes Distribués Singuliers, (French) [Control of Singular Distributed Systems], Gauthier-Villars, Montrouge, 1983.  Google Scholar

[18]

H. Lou and W. Wang, Optimal blowup time for controlled ordinary differential equations, ESAIM Control Optim. Calc. Var., 21 (2015), 815-834.  doi: 10.1051/cocv/2014051.  Google Scholar

[19]

H. Lou and W. Wang, Optimal blowup/quenching time for controlled autonomous ordinary differential equations, Math. Control Relat. Fields, 5 (2015), 517-527.  doi: 10.3934/mcrf.2015.5.517.  Google Scholar

[20]

H. LouJ. Wen and Y. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. Fields, 4 (2014), 289-314.  doi: 10.3934/mcrf.2014.4.289.  Google Scholar

[21]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972.  Google Scholar

show all references

References:
[1]

H. Amann and P. Quittner, Optimal control problems with final observation governed by explosive parabolic equations, SIAM J. Control Optim., 44 (2005), 1215-1238.  doi: 10.1137/S0363012903433450.  Google Scholar

[2]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[3]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22.  doi: 10.1016/S0377-0427(98)00100-9.  Google Scholar

[4]

E. N. Barron and W. Liu, Optimal control of the blowup time, SIAM J. Control Optim., 34 (1996), 102-123.  doi: 10.1137/S0363012993245021.  Google Scholar

[5]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20 (1989), 558-566.  doi: 10.1137/0520039.  Google Scholar

[6]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations, 89 (1991), 176-202.  doi: 10.1016/0022-0396(91)90118-S.  Google Scholar

[7]

H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[8]

R. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203.  doi: 10.1007/BF01213863.  Google Scholar

[9]

J.-S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edinburgh Math. Soc., 40 (1997), 437-456.  doi: 10.1017/S0013091500023932.  Google Scholar

[10]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.  Google Scholar

[11]

H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1/(1 − u), Publ. Res. Inst. Math. Sci., 10 (1974/75), 729-736.  doi: 10.2977/prims/1195191889.  Google Scholar

[12]

X. Li and J. Yong, Optimal Control Theory for Infinite-dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[13]

P. Lin, Quenching time optimal control for some ordinary differential equations, J. Appl. Math., 2014 (2014), Art. ID 127809, 13 pages. doi: 10.1155/2014/127809.  Google Scholar

[14]

P. Lin, Extendability and optimal control after quenching for some ordinary differential equations, J. Optim. Theory Appl., 168 (2016), 769-784.  doi: 10.1007/s10957-015-0858-x.  Google Scholar

[15]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[16]

P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.  doi: 10.1016/j.matpur.2013.06.001.  Google Scholar

[17]

J.-L. Lions, Contrôle des Systèmes Distribués Singuliers, (French) [Control of Singular Distributed Systems], Gauthier-Villars, Montrouge, 1983.  Google Scholar

[18]

H. Lou and W. Wang, Optimal blowup time for controlled ordinary differential equations, ESAIM Control Optim. Calc. Var., 21 (2015), 815-834.  doi: 10.1051/cocv/2014051.  Google Scholar

[19]

H. Lou and W. Wang, Optimal blowup/quenching time for controlled autonomous ordinary differential equations, Math. Control Relat. Fields, 5 (2015), 517-527.  doi: 10.3934/mcrf.2015.5.517.  Google Scholar

[20]

H. LouJ. Wen and Y. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. Fields, 4 (2014), 289-314.  doi: 10.3934/mcrf.2014.4.289.  Google Scholar

[21]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972.  Google Scholar

[1]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[13]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[18]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[19]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (67)
  • HTML views (349)
  • Cited by (1)

Other articles
by authors

[Back to Top]