\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Switching between a pair of stocks: An optimal trading rule

Abstract / Introduction Full Text(HTML) Figure(6) / Table(8) Related Papers Cited by
  • This paper is about a stock trading rule involving two stocks. The trader may have a long position in either stock or in cash. She may also switch between them any time. Her objective is to trade over time to maximize an expected return. In this paper, we reduce the problem to the optimal trading control problem under a geometric Brownian motion model with regime switching. We use a two-state Markov chain to capture the general market modes. In particular, a single market cycle consisting of a bull market followed by a bear market is considered. We also impose a fixed percentage cost on each transaction. We focus on simple threshold-type policies and study all possible combinations. We establish algebraic equations to characterize these threshold levels. We also present sufficient conditions that guarantee the optimality of these policies. Finally, some numerical examples are provided to illustrate our results.

    Mathematics Subject Classification: Primary: 93E20, 91G80; Secondary: 49L20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Switching Regions ($\alpha _t = 1$)

    Figure 2.  Value Functions

    Figure 3.  ${\bf{S}}^1$ = QQQ, ${\bf{S}}^2$ = SPY: The threshold levels ${b_1},{b_2}$ and the corresponding equity curve

    Figure 4.  ${\bf{S}}^1$ = QQQ, ${\bf{S}}^2$ = SPY: The threshold levels ${b_1},{b_2}$ and the corresponding equity curve

    Figure 5.  log(Daily closing prices) of KO and PEP

    Figure 6.  ${\bf{S}}^1$ = KO, ${\bf{S}}^2$ = PEP: The threshold levels $b_1,b_2,s_1,s_2$ and the corresponding equity curve

    Table 1.  $(b_1,b_2,s_1,s_2)$ with varying $\mu_1$

    $\mu_1$ 0.1548 0.1648 0.1748 0.1848 0.1948
    $s_1$ 2.0767 2.2457 2.4152 2.5851 2.7557
    $b_2$ 1.9031 2.0666 2.2309 2.3961 2.5620
    $b_1$ 1.8936 2.0566 2.2203 2.3849 2.5503
    $s_2$ 1.6435 1.7812 1.9193 2.0576 2.1964
     | Show Table
    DownLoad: CSV

    Table 2.  $(b_1,b_2,s_1,s_2)$ with varying $\mu_2$

    $\mu_2$ 0.0787 0.0887 0.0987 0.1087 0.1187
    $s_1$ 3.4930 2.8570 2.4152 2.0905 1.8420
    $b_2$ 3.2466 2.6468 2.2309 1.9261 1.6932
    $b_1$ 3.2296 2.6336 2.2203 1.9173 1.6857
    $s_2$ 2.7063 2.2459 1.9193 1.6753 1.4862
     | Show Table
    DownLoad: CSV

    Table 3.  $(b_1,b_2,s_1,s_2)$ with varying $\sigma_{11}$

    $\sigma_{11}$ 0.2607 0.2707 0.2807 0.2907 0.3007
    $s_1$ 2.4001 2.4076 2.4152 2.4227 2.4302
    $b_2$ 2.2291 2.2300 2.2309 2.2320 2.2331
    $b_1$ 2.2199 2.2201 2.2203 2.2206 2.2210
    $s_2$ 1.9350 1.9270 1.9193 1.9116 1.9042
     | Show Table
    DownLoad: CSV

    Table 4.  $(b_1,b_2,s_1,s_2)$ with varying $\sigma_{22}$

    $\sigma_{22}$ 0.1071 0.1171 0.1271 0.1371 0.1471
    $s_1$ 2.4132 2.4140 2.4152 2.4167 2.4187
    $b_2$ 2.2307 2.2308 2.2309 2.2312 2.2314
    $b_1$ 2.2203 2.2203 2.2203 2.2204 2.2205
    $s_2$ 1.9213 1.9205 1.9193 1.9177 1.9157
     | Show Table
    DownLoad: CSV

    Table 5.  $(b_1,b_2,s_1,s_2)$ with varying $\sigma_{12}( = \sigma_{21})$

    $\sigma_{12}(=\sigma_{21})$ 0.0729 0.0829 0.0929 0.1029 0.1129
    $s_1$ 2.4333 2.4242 2.4152 2.4064 2.3978
    $b_2$ 2.2336 2.2322 2.2309 2.2298 2.2288
    $b_1$ 2.2211 2.2207 2.2203 2.2201 2.2199
    $s_2$ 1.9011 1.9102 1.9193 1.9283 1.9374
     | Show Table
    DownLoad: CSV

    Table 6.  $(b_1,b_2,s_1,s_2)$ with varying $\rho$

    $\rho$ 0.01 0.02 0.03 0.04 0.05
    $s_1$ 2.1006 2.2373 2.4152 2.6561 3.0009
    $b_2$ 1.9439 2.0685 2.2309 2.4515 2.7681
    $b_1$ 1.9356 2.0592 2.2203 2.4391 2.7529
    $s_2$ 1.7008 1.7961 1.9193 2.0844 2.3174
     | Show Table
    DownLoad: CSV

    Table 7.  $(b_1,b_2,s_1,s_2)$ with varying $\lambda $

    $\lambda $ 0.8 0.9 1.0 1.1 1.2
    $s_1$ 2.4070 2.4111 2.4152 2.4193 2.4201
    $b_2$ 2.2266 2.2288 2.2309 2.2332 2.2336
    $b_1$ 2.2158 2.2181 2.2203 2.2226 2.2231
    $s_2$ 1.9208 1.9200 1.9193 1.9184 1.9183
     | Show Table
    DownLoad: CSV

    Table 8.  $(b_1,b_2,s_1,s_2)$ with varying $K$

    $K$ 0.00050 0.00075 0.00100 0.00500 0.01000
    $s_1$ 2.3315 2.3762 2.4152 2.8814 3.4914
    $b_2$ 2.1908 2.2119 2.2309 2.4752 2.7979
    $b_1$ 2.1840 2.2031 2.2203 2.4459 2.7528
    $s_2$ 1.9543 1.9347 1.9193 1.7878 1.6694
     | Show Table
    DownLoad: CSV
  • [1] B. R. Barmish and J. A. Primbs, On a new paradigm for stock trading via a model-free feedback controller, IEEE Trans. Automatic Control, 61 (2016), 662-676.  doi: 10.1109/TAC.2015.2444078.
    [2] M. DaiQ. Zhang and Q. Zhu, Trend following trading under a regime switching model, SIAM Journal on Financial Mathematics, 1 (2010), 780-810.  doi: 10.1137/090770552.
    [3] M. H. A. Davis and A. R. Norman, Portfolio selection with transaction costs, Mathematics of Operations Research, 15 (1990), 676-713.  doi: 10.1287/moor.15.4.676.
    [4] X. Guo and Q. Zhang, Optimal selling rules in a regime switching model, IEEE Trans. Automatic Control, 50 (2005), 1450-1455.  doi: 10.1109/TAC.2005.854657.
    [5] Y. Hu and B. Øksendal, Optimal time to invest when the price processes are geometric Brownian motions, Finance and Stochastics, 2 (1998), 295-310.  doi: 10.1007/s007800050042.
    [6] S. Iwarere and B. R. Barmish, A confidence interval triggering method for stock trading via feedback control, Proc. American Control Conference, Baltimore, MD, (2010), 6910-6916. doi: 10.1109/ACC.2010.5531311.
    [7] A. Merhi and M. Zervos, A model for reversible investment capacity expansion, SIAM J. Control and Optimization, 46 (2007), 839-876.  doi: 10.1137/050640758.
    [8] D. NguyenJ. Tie and Q. Zhang, An optimal trading rule under a switchable mean-reversion model, Journal of Optimization Theory and Applications, 161 (2014), 145-163.  doi: 10.1007/s10957-012-0260-x.
    [9] B. Øksendal, Stochastic Differential Equations, 6th Ed., Springer-Verlag, New York, 2003. doi: 10.1007/978-3-642-14394-6.
    [10] S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.
    [11] Q. S. Song and Q. Zhang, An optimal pairs-trading rule, Automatica, 49 (2013), 3007-3014.  doi: 10.1016/j.automatica.2013.07.012.
    [12] E. M. Stein and R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton and Oxford, 2011.
    [13] J. TieH. Zhang and Q. Zhang, An Optimal strategy for pairs-trading under geometric Brownian motions, Journal of Optimization Theory and Applications, (2017), 1-22.  doi: 10.1007/s10957-017-1065-8.
    [14] H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high, Automatica, 44 (2008), 1511-1518.  doi: 10.1016/j.automatica.2007.11.003.
    [15] Q. Zhang, Stock trading: An optimal selling rule, SIAM J. Control and Optimization, 40 (2001), 64-87.  doi: 10.1137/S0363012999356325.
  • 加载中

Figures(6)

Tables(8)

SHARE

Article Metrics

HTML views(2338) PDF downloads(472) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return