In this paper, we study the approximate null controllability for the stochastic heat equation with the control acting on a measurable subset, and the optimal actuator location of the minimum norm controls. We formulate a relaxed optimization problem for both actuator location and its corresponding minimum norm control into a two-person zero sum game problem and develop a sufficient and necessary condition for the optimal solution via Nash equilibrium. At last, we prove that the relaxed optimal solution is an optimal actuator location for the classical problem.
Citation: |
G. Allaire
, A. Münch
and F. Periago
, Long time behavior of a two-phase optimal design for the heat equation, SIAM Journal on Control and Optimization, 48 (2010)
, 5333-5356.
doi: 10.1137/090780481.![]() ![]() ![]() |
|
J. Apraiz
, L. Escauriaza
, G. Wang
and C. Zhang
, Observability inequalities and measurable sets, Journal of the European Mathematical Society, 16 (2014)
, 2433-2475.
doi: 10.4171/JEMS/490.![]() ![]() ![]() |
|
J.-P. Aubin,
Applied Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1979.
![]() ![]() |
|
V. Barbu
, A. Rǎşcanu
and G. Tessitore
, Carleman estimates and controllability of linear stochastic heat equations, Applied Mathematics & Optimization, 47 (2003)
, 97-120.
doi: 10.1007/s00245-002-0757-z.![]() ![]() ![]() |
|
N. Darivandi, K. Morris and A. Khajepour, An algorithm for LQ optimal actuator location,
Smart Materials and Structures, 22 (2013), 035001.
![]() |
|
K. Du
and Q. Meng
, A revisit to-theory of super-parabolic backward stochastic partial differential equations in rd, Stochastic Processes and their Applications, 120 (2010)
, 1996-2015.
doi: 10.1016/j.spa.2010.06.001.![]() ![]() ![]() |
|
X. Fu
and X. Liu
, Controllability and observability of some stochastic complex ginzburg-landau equations, SIAM Journal on Control and Optimization, 55 (2017)
, 1102-1127.
doi: 10.1137/15M1039961.![]() ![]() ![]() |
|
P. Gao
, M. Chen
and Y. Li
, Observability estimates and null controllability for forward and backward linear stochastic kuramoto-sivashinsky equations, SIAM Journal on Control and Optimization, 53 (2015)
, 475-500.
doi: 10.1137/130943820.![]() ![]() ![]() |
|
B.-Z. Guo
, Y. Xu
and D.-H. Yang
, Optimal actuator location of minimum norm controls for heat equation with general controlled domain, Journal of Differential Equations, 261 (2016)
, 3588-3614.
doi: 10.1016/j.jde.2016.05.037.![]() ![]() ![]() |
|
B.-Z. Guo
and D.-H. Yang
, Optimal actuator location for time and norm optimal control of null controllable heat equation, Mathematics of Control, Signals, and Systems, 27 (2015)
, 23-48.
doi: 10.1007/s00498-014-0133-y.![]() ![]() ![]() |
|
Y. Hu
and S. Peng
, Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Analysis and Applications, 9 (1991)
, 445-459.
doi: 10.1080/07362999108809250.![]() ![]() ![]() |
|
X. Liu
, Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift, SIAM Journal on Control and Optimization, 52 (2014)
, 836-860.
doi: 10.1137/130926791.![]() ![]() ![]() |
|
Q. Lü
, Some results on the controllability of forward stochastic heat equations with control on the drift, Journal of Functional Analysis, 260 (2011)
, 832-851.
doi: 10.1016/j.jfa.2010.10.018.![]() ![]() ![]() |
|
Q. Lü
, J. Yong
and X. Zhang
, Representation of itô integrals by lebesgue/bochner integrals, Journal of the European Mathematical Society, 14 (2012)
, 1795-1823.
doi: 10.4171/JEMS/347.![]() ![]() ![]() |
|
A. Münch
, Optimal design of the support of the control for the 2-d wave equation: a numerical method, Int. J. Numer. Anal. Model, 5 (2008)
, 331-351.
![]() ![]() |
|
A. Münch
, Optimal location of the support of the control for the 1-d wave equation: Numerical investigations, Computational Optimization and Applications, 42 (2009)
, 443-470.
doi: 10.1007/s10589-007-9133-x.![]() ![]() ![]() |
|
K. D. Phung
and G. Wang
, An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc, 15 (2013)
, 681-703.
doi: 10.4171/JEMS/371.![]() ![]() ![]() |
|
Y. Privat
, E. Trélat
and E. Zuazua
, Optimal shape and location of sensors for parabolic equations with random initial data, Archive for Rational Mechanics and Analysis, 216 (2015)
, 921-981.
doi: 10.1007/s00205-014-0823-0.![]() ![]() ![]() |
|
S. Tang
and X. Zhang
, Null controllability for forward and backward stochastic parabolic equations, SIAM Journal on Control and Optimization, 48 (2009)
, 2191-2216.
doi: 10.1137/050641508.![]() ![]() ![]() |
|
D. Tiba
, Finite element approximation for shape optimization problems with neumann and mixed boundary conditions, SIAM Journal on Control and Optimization, 49 (2011)
, 1064-1077.
doi: 10.1137/100783236.![]() ![]() ![]() |
|
D. Yang
and J. Zhong
, Observability inequality of backward stochastic heat equations for measurable sets and its applications, SIAM Journal on Control and Optimization, 54 (2016)
, 1157-1175.
doi: 10.1137/15M1033289.![]() ![]() ![]() |
|
E. Zuazua
, Controllability of partial differential equations and its semi-discrete approximations, Discrete and Continuous Dynamical Systems, 8 (2002)
, 469-513.
doi: 10.3934/dcds.2002.8.469.![]() ![]() ![]() |
|
E. Zuazua
, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007)
, 527-621.
doi: 10.1016/S1874-5717(07)80010-7.![]() ![]() ![]() |