• Previous Article
    Robust optimal investment and reinsurance of an insurer under Jump-diffusion models
  • MCRF Home
  • This Issue
  • Next Article
    Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions
March  2019, 9(1): 77-95. doi: 10.3934/mcrf.2019004

On Algebraic condition for null controllability of some coupled degenerate systems

Département de Mathématiques, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, Marrakech, 40000, B.P 2390, Morocco

* Corresponding author: fadilimed@live.fr

Dedicated to Professor H. Bouslous on the occasion of his 65th birthday

Received  September 2017 Revised  February 2018 Published  August 2018

In this paper we will generalize the Kalman rank condition for the null controllability to $n$-coupled linear degenerate parabolic systems with constant coefficients, diagonalizable diffusion matrix, and $m$-controls. For that we prove a global Carleman estimate for the solutions of a scalar $2n$-order parabolic equation then we infer from it an observability inequality for the corresponding adjoint system, and thus the null controllability.

Citation: Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control & Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004
References:
[1]

E. M. Ait BenhassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems, Portugal. Math., 68 (2011), 345-367. doi: 10.4171/PM/1895. Google Scholar

[2]

E. M. Ait BenhassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459. doi: 10.3934/eect.2013.2.441. Google Scholar

[3]

F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267. Google Scholar

[4]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Diff. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24. Google Scholar

[5]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8. Google Scholar

[6]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with application to nullcontrolability, J. evol. equ., 6 (2006), 161-204. doi: 10.1007/s00028-006-0222-6. Google Scholar

[7]

M. CampitiG. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36. doi: 10.1007/PL00005959. Google Scholar

[8]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electronic Journal of Differential Equations, 136 (2006), 1-20. Google Scholar

[9]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. Google Scholar

[10]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X. Google Scholar

[11]

P. CannarsaP. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Memoirs of the American Mathematical Society, 239 (2016), ⅸ+209 pp. doi: 10.1090/memo/1133. Google Scholar

[12]

P. Cannarsa and L. de Teresa, Controllability of 1-d coupled degenerate parabolic equations, Electronic Journal of Differential Equations, 73 (2009), 1-21. Google Scholar

[13]

M. Fadili and L. Maniar, Null controllability of n-coupled degenerate parabolic systems with m-controls, J. Evol. Equ., 17 (2017), 1311-1340. doi: 10.1007/s00028-017-0385-3. Google Scholar

[14]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lectures notes series 34, Seoul National University Research Center, Seoul, 1996. Google Scholar

[15]

M. Gonzalez-Burgos and L. De Teresa, Controllability results for cascade systems of $m$-coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859. Google Scholar

[16]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054. doi: 10.1137/120901374. Google Scholar

[17]

A. Hajjaj, Estimations de Carleman et Applications à la contrôolabilité à Zéro D'une Classe De Systèmes Paraboliques Dégénérés, Thèse d'Etat, Marrakech, 2013.Google Scholar

[18]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. in PDE, 20 (1995), 335-356. doi: 10.1080/03605309508821097. Google Scholar

[19]

R. D. Meyer, Degenerate elliptic differential systems, J. Math. Anal. Appl., 29 (1970), 436-442. doi: 10.1016/0022-247X(70)90093-4. Google Scholar

[20]

J. Zabczyk, Mathematical Control Theory, Birkhäuser, Boston, 1995. doi: 10.1007/978-0-8176-4733-9. Google Scholar

show all references

References:
[1]

E. M. Ait BenhassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems, Portugal. Math., 68 (2011), 345-367. doi: 10.4171/PM/1895. Google Scholar

[2]

E. M. Ait BenhassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459. doi: 10.3934/eect.2013.2.441. Google Scholar

[3]

F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267. Google Scholar

[4]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Diff. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24. Google Scholar

[5]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8. Google Scholar

[6]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with application to nullcontrolability, J. evol. equ., 6 (2006), 161-204. doi: 10.1007/s00028-006-0222-6. Google Scholar

[7]

M. CampitiG. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36. doi: 10.1007/PL00005959. Google Scholar

[8]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electronic Journal of Differential Equations, 136 (2006), 1-20. Google Scholar

[9]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. Google Scholar

[10]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X. Google Scholar

[11]

P. CannarsaP. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Memoirs of the American Mathematical Society, 239 (2016), ⅸ+209 pp. doi: 10.1090/memo/1133. Google Scholar

[12]

P. Cannarsa and L. de Teresa, Controllability of 1-d coupled degenerate parabolic equations, Electronic Journal of Differential Equations, 73 (2009), 1-21. Google Scholar

[13]

M. Fadili and L. Maniar, Null controllability of n-coupled degenerate parabolic systems with m-controls, J. Evol. Equ., 17 (2017), 1311-1340. doi: 10.1007/s00028-017-0385-3. Google Scholar

[14]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lectures notes series 34, Seoul National University Research Center, Seoul, 1996. Google Scholar

[15]

M. Gonzalez-Burgos and L. De Teresa, Controllability results for cascade systems of $m$-coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859. Google Scholar

[16]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054. doi: 10.1137/120901374. Google Scholar

[17]

A. Hajjaj, Estimations de Carleman et Applications à la contrôolabilité à Zéro D'une Classe De Systèmes Paraboliques Dégénérés, Thèse d'Etat, Marrakech, 2013.Google Scholar

[18]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. in PDE, 20 (1995), 335-356. doi: 10.1080/03605309508821097. Google Scholar

[19]

R. D. Meyer, Degenerate elliptic differential systems, J. Math. Anal. Appl., 29 (1970), 436-442. doi: 10.1016/0022-247X(70)90093-4. Google Scholar

[20]

J. Zabczyk, Mathematical Control Theory, Birkhäuser, Boston, 1995. doi: 10.1007/978-0-8176-4733-9. Google Scholar

[1]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[2]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[3]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[4]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[5]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[6]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[7]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations & Control Theory, 2019, 0 (0) : 1-19. doi: 10.3934/eect.2020005

[8]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[9]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[10]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[11]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[12]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019037

[13]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[14]

Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. Persistent regional null contrillability for a class of degenerate parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 607-635. doi: 10.3934/cpaa.2004.3.607

[15]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[16]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[17]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[18]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[19]

Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415

[20]

Mu-Ming Zhang, Tian-Yuan Xu, Jing-Xue Yin. Controllability properties of degenerate pseudo-parabolic boundary control problems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019034

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (79)
  • HTML views (684)
  • Cited by (0)

[Back to Top]