In this paper, we study the insensitizing control problem in the discrete setting of finite-differences. We prove the existence of a control that insensitizes the norm of the observed solution of a 1-D semi discrete parabolic equation. We derive a (relaxed) observability estimate that yields a controllability result for the cascade system arising in the insensitizing control formulation. Moreover, we deal with the problem of computing numerical approximations of insensitizing controls for the heat equation by using the Hilbert Uniqueness Method (HUM). We present various numerical illustrations.
Citation: |
Figure 5.
Figure 6.
The case where
Figure 7.
Different values of
Figure 8.
The case where
Figure 9. Convergence properties for the quadratic case. Same legend as in Figure 3.
[1] | F. Ammar-Khojda, A. Benabdallah, M. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence, J. Math. Anal. Appl., 444 (2016), 1071-1113. doi: 10.1016/j.jmaa.2016.06.058. |
[2] | O. Bodart and C. Fabre, Controls insensitizing the norm of the solutions of a semilinear heat equation, J. Math. Anal. and App., 195 (1995), 658-683. doi: 10.1006/jmaa.1995.1382. |
[3] | O. Bodart, M. González-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Communications in Partial Differential Equations, 29 (2004), 1017-1050. doi: 10.1081/PDE-200033749. |
[4] | O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711. doi: 10.1016/j.na.2004.03.012. |
[5] | F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM Proceedings, 41 (2013), 15-58. doi: 10.1051/proc/201341002. |
[6] | F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, J. Math Pures Appl., 93 (2010), 240-276. doi: 10.1016/j.matpur.2009.11.003. |
[7] | F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397. doi: 10.1137/100784278. |
[8] | F. Boyer, F. Hubert and J. Le Rousseau, Uniform null-controllability for space/time-discretized parabolic equations, Numer. Math., 118 (2011), 601-661. doi: 10.1007/s00211-011-0368-1. |
[9] | F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear and semi-discrete parabolic equations, Ann. I. H. Poincaré-AN, 31 (2014), 1035-1078. doi: 10.1016/j.anihpc.2013.07.011. |
[10] | N. Carreño, M. Gueye and S. Guerrero, Insensitizing control with two vanishing components for the three-dimensional Boussinesq system, ESAIM Control Optim. Calc. Var., 21 (2015), 73-100. doi: 10.1051/cocv/2014020. |
[11] | I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976. |
[12] | C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Royal Soc. Edinburgh, 125 (1995), 31-61. doi: 10.1017/S0308210500030742. |
[13] | E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincaré-AN, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7. |
[14] | A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea, 1996. |
[15] | R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems, Acta Numer., (1994), 269-378. doi: 10.1017/S0962492900002452. |
[16] | R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511721595. |
[17] | M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m $ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859. |
[18] | S. Guerrero, Controllability of systems of Stokes equations with one control force: existence of insensitizing controls, Ann. I. H. Poincaré-AN, 24 (2007), 1029-1054. doi: 10.1016/j.anihpc.2006.11.001. |
[19] | S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135. |
[20] | M. Gueye, Insensitizing controls for the Navier-Stokes equations, Ann. I. H. Poincaré-AN, 30 (2013), 825-844. doi: 10.1016/j.anihpc.2012.09.005. |
[21] | O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077. |
[22] | S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Syst. Control Lett., 55 (2006), 597-609. doi: 10.1016/j.sysconle.2006.01.004. |
[23] | J.-L. Lions, Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes, Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, University of Málaga, 1990, 43-54. |
[24] | L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72. doi: 10.1080/03605300008821507. |
[25] | L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation, Commun. Pure. Appl. Anal., 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457. |
[26] | E. Zuazua, Control and numerical approximation of the wave and heat equation, International Congress of Mathematicians, Madrid, Spain, 3 (2006), 1389-1417. |