We are concerned with an inverse problem arising in thermal imaging in a bounded domain $Ω\subset \mathbb{R}^n$, $n=2, 3$. This inverse problem consists in the determination of the heat exchange coefficient $q(x)$ appearing in the boundary of a heat equation with Robin boundary condition.
Citation: |
G. Alessandrini
, L. Del Piero
and L. Rondi
, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Probl., 19 (2003)
, 973-984.
![]() |
|
G. Alessandrini
and E. Sincich
, Solving elliptic Cauchy problems and the identification of nonlinear corrosion, J. Comput. Appl. Math., 198 (2007)
, 307-320.
doi: 10.1016/j.cam.2005.06.048.![]() ![]() ![]() |
|
M. Bellassoued
, J. Cheng
and M. Choulli
, Stability estimate for an inverse boundary coefficient problem in thermal imaging, J. Math Anal. Appl., 343 (2008)
, 328-336.
doi: 10.1016/j.jmaa.2008.01.066.![]() ![]() ![]() |
|
M. Bellassoued
, M. Choulli
and A. Jbalia
, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude, Math. Meth. Appl. Sci., 36 (2013)
, 2429-2448.
![]() |
|
L. Bourgeois
, About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1, 1 domains, Math. Model. Numer. Anal., 44 (2010)
, 715-735.
doi: 10.1051/m2an/2010016.![]() ![]() ![]() |
|
K. Bryan
and Jr. L. F. Caudill
, An inverse problem in thermal imaging, SIAM J. Appl. Math., 56 (1996)
, 715-735.
doi: 10.1137/S0036139994277828.![]() ![]() ![]() |
|
K. Bryan and Jr. L. F. Caudill, Uniqueness for a boundary identification problem in thermal imaging. in: J. Graef, R. Shivaji, B. Soni, Zhu (Eds. ), Differential Equations and Computational Simulations III, in: Electron. J. Differ. Equ. Conf., 1 (1998), 23-39.
![]() ![]() |
|
S. Busenberg
and W. Fang
, Identification of semiconductor contact resistivity, Quar. J. Appl. Math., 49 (1991)
, 639-649.
doi: 10.1090/qam/1134746.![]() ![]() ![]() |
|
S. Chaabane
, I. Fellah
, M. Jaoua
and J. Leblond
, Logarithmic stability estimates for a robin coefficient in two-dimensional Laplace inverse problems, Inverse Probl., 20 (2004)
, 47-59.
![]() |
|
S. Chaabane
, I. Feki
and N. Mars
, Numerical reconstruction of a piecewise constant Robin parameter in the two- or three-dimensional case, Inverse Probl., 28 (2012)
, 065016.
![]() |
|
S. Chaabane
and M. Jaoua
, Identification of Robin coefficient by means of boundary measurements, Inverse Probl., 15 (1999)
, 1425-1438.
doi: 10.1088/0266-5611/15/6/303.![]() ![]() ![]() |
|
J. Cheng
, M. Choulli
and J. Lin
, Stable determination of a boundary coefficient in an elliptic equation, Math Models Methods Appl Sci., 18 (2008)
, 107-123.
doi: 10.1142/S0218202508002620.![]() ![]() ![]() |
|
J. Cheng
, M. Choulli
and X. Yang
, An iterative BEM for the inverse problem of detecting corrosion in a pipe, Numer. Math. J. Chinese Univ., 14 (2005)
, 252-266.
![]() |
|
M. Choulli
and A. Jbalia
, The problem of detecting corrosion by electric measurements revisited, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016)
, 643-650.
doi: 10.3934/dcdss.2016018.![]() ![]() ![]() |
|
M. Choulli
, An inverse problem in corrosion detection: Stability estimates, J. Inverse Ill-Posed Probl., 12 (2004)
, 349-367.
doi: 10.1515/1569394042248247.![]() ![]() ![]() |
|
M. Choulli
, Stability estimates for an inverse elliptic problem, J. Inverse Ill-Posed Probl., 10 (2002)
, 601-610.
doi: 10.1515/jiip.2002.10.6.601.![]() ![]() ![]() |
|
W. Fang
and E. Cumberbatch
, Inverse problems for metal oxide semiconductor field-effect transistor contact resistivity, SIAM J. Appl. Math., 52 (1992)
, 699-709.
doi: 10.1137/0152039.![]() ![]() ![]() |
|
W. Fang
and M. Lu
, A fast collocation method for an inverse boundary value problem, Int. J. Numer. Methods Eng., 59 (2004)
, 1563-1585.
doi: 10.1002/nme.928.![]() ![]() ![]() |
|
D. Fasino
and G. Inglese
, Stability of the solutions of an inverse problem for Laplace's equation in a thin strip, Numer. Func. Anal. Opt., 22 (2001)
, 549-560.
doi: 10.1081/NFA-100105307.![]() ![]() ![]() |
|
D. Fujiwara
, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc.Japan Acad., 43 (1967)
, 82-86.
doi: 10.3792/pja/1195521686.![]() ![]() ![]() |
|
P. Germain, Thèse de doctorat: Solutions fortes, solutions faibles d'équations aux dérivées partielles d'évolution, Ecole polytechnique France, 2005.
![]() |
|
L. Hörmander, The Analysis of Partial Differential Operators, 2, 2d ed: Springer-Verlag, Berlin, 1990.
![]() |
|
G. Inglese
, An inverse problem in corrosion detection, Inverse Probl., 13 (1977)
, 977-994.
doi: 10.1088/0266-5611/13/4/006.![]() ![]() ![]() |
|
M. Jaoua, S. Chaabane, C. Elhechmi, J. Leblond, M. Mahjoub and J. R. Partington, On some robust algorithms for the Robin inverse problem. International conference in honor of Claude Lobry, 2007.
![]() |
|
B. Jin
and X. Lu
, Numerical identification for a Robin coefficient in parabolic problems, Math. Comp., 81 (2012)
, 1369-1398.
doi: 10.1090/S0025-5718-2012-02559-2.![]() ![]() ![]() |
|
B. Jin
and J. Zou
, Numerical estimation of the Robin coefficient in a stationary diffusion equation, IMA J. Numer. Anal., 30 (2010)
, 677-701.
doi: 10.1093/imanum/drn066.![]() ![]() ![]() |
|
B. Jin
and J. Zou
, Numerical estimation of piecewise constant Robin coefficient, SIAM J. Control Optim., 48 (2009)
, 1977-2002.
doi: 10.1137/070710846.![]() ![]() ![]() |
|
P. G. Kaup
, F. Santosa
and M. Vogelius
, Method for imaging corrosion damage in thin plates from electrostatic data, Inverse Probl., 12 (1996)
, 279-293.
![]() |
|
F. Lin
and W. Fang
, A linear integral equation approach to the Robin inverse problem, Inverse Probl., 21 (2005)
, 1757-1772.
doi: 10.1088/0266-5611/21/5/015.![]() ![]() ![]() |
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag: New York; 1993.
![]() ![]() |
|
Z. Sun
, Y. Jiao
, B. Jin
and X. Lu
, Numerical identification of a sparse Robin coefficient, Adv. Comput. Math., 41 (2015)
, 131-148.
doi: 10.1007/s10444-014-9352-5.![]() ![]() ![]() |
|
F. M. White, Heat and Mass Transfer: Addison-Wesley, Reading, MA, 1988.
![]() |
|
Y. Xu
and J. Zou
, Analysis of an adaptive finite element method for recovering the Robin coefficient, SIAM J. Control Optimiz., 53 (2015)
, 622-644.
doi: 10.1137/130941742.![]() ![]() ![]() |
|
F. Yang
, L. Yan
and T. Wei
, The identification of a Robin coefficient by a conjugate gradient method, Int. J. Numer. Meth. Engng., 78 (2009)
, 800-816.
doi: 10.1002/nme.2507.![]() ![]() ![]() |