Advanced Search
Article Contents
Article Contents

On a logarithmic stability estimate for an inverse heat conduction problem

  • * Corresponding author: Aymen Jbalia

    * Corresponding author: Aymen Jbalia
Abstract Full Text(HTML) Related Papers Cited by
  • We are concerned with an inverse problem arising in thermal imaging in a bounded domain $Ω\subset \mathbb{R}^n$, $n=2, 3$. This inverse problem consists in the determination of the heat exchange coefficient $q(x)$ appearing in the boundary of a heat equation with Robin boundary condition.

    Mathematics Subject Classification: Primary: 65N21, 35K05, 35R30.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   G. Alessandrini , L. Del Piero  and  L. Rondi , Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Probl., 19 (2003) , 973-984. 
      G. Alessandrini  and  E. Sincich , Solving elliptic Cauchy problems and the identification of nonlinear corrosion, J. Comput. Appl. Math., 198 (2007) , 307-320.  doi: 10.1016/j.cam.2005.06.048.
      M. Bellassoued , J. Cheng  and  M. Choulli , Stability estimate for an inverse boundary coefficient problem in thermal imaging, J. Math Anal. Appl., 343 (2008) , 328-336.  doi: 10.1016/j.jmaa.2008.01.066.
      M. Bellassoued , M. Choulli  and  A. Jbalia , Stability of the determination of the surface impedance of an obstacle from the scattering amplitude, Math. Meth. Appl. Sci., 36 (2013) , 2429-2448. 
      L. Bourgeois , About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1, 1 domains, Math. Model. Numer. Anal., 44 (2010) , 715-735.  doi: 10.1051/m2an/2010016.
      K. Bryan  and  Jr. L. F. Caudill , An inverse problem in thermal imaging, SIAM J. Appl. Math., 56 (1996) , 715-735.  doi: 10.1137/S0036139994277828.
      K. Bryan and Jr. L. F. Caudill, Uniqueness for a boundary identification problem in thermal imaging. in: J. Graef, R. Shivaji, B. Soni, Zhu (Eds. ), Differential Equations and Computational Simulations III, in: Electron. J. Differ. Equ. Conf., 1 (1998), 23-39.
      S. Busenberg  and  W. Fang , Identification of semiconductor contact resistivity, Quar. J. Appl. Math., 49 (1991) , 639-649.  doi: 10.1090/qam/1134746.
      S. Chaabane , I. Fellah , M. Jaoua  and  J. Leblond , Logarithmic stability estimates for a robin coefficient in two-dimensional Laplace inverse problems, Inverse Probl., 20 (2004) , 47-59. 
      S. Chaabane , I. Feki  and  N. Mars , Numerical reconstruction of a piecewise constant Robin parameter in the two- or three-dimensional case, Inverse Probl., 28 (2012) , 065016. 
      S. Chaabane  and  M. Jaoua , Identification of Robin coefficient by means of boundary measurements, Inverse Probl., 15 (1999) , 1425-1438.  doi: 10.1088/0266-5611/15/6/303.
      J. Cheng , M. Choulli  and  J. Lin , Stable determination of a boundary coefficient in an elliptic equation, Math Models Methods Appl Sci., 18 (2008) , 107-123.  doi: 10.1142/S0218202508002620.
      J. Cheng , M. Choulli  and  X. Yang , An iterative BEM for the inverse problem of detecting corrosion in a pipe, Numer. Math. J. Chinese Univ., 14 (2005) , 252-266. 
      M. Choulli  and  A. Jbalia , The problem of detecting corrosion by electric measurements revisited, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016) , 643-650.  doi: 10.3934/dcdss.2016018.
      M. Choulli , An inverse problem in corrosion detection: Stability estimates, J. Inverse Ill-Posed Probl., 12 (2004) , 349-367.  doi: 10.1515/1569394042248247.
      M. Choulli , Stability estimates for an inverse elliptic problem, J. Inverse Ill-Posed Probl., 10 (2002) , 601-610.  doi: 10.1515/jiip.2002.10.6.601.
      W. Fang  and  E. Cumberbatch , Inverse problems for metal oxide semiconductor field-effect transistor contact resistivity, SIAM J. Appl. Math., 52 (1992) , 699-709.  doi: 10.1137/0152039.
      W. Fang  and  M. Lu , A fast collocation method for an inverse boundary value problem, Int. J. Numer. Methods Eng., 59 (2004) , 1563-1585.  doi: 10.1002/nme.928.
      D. Fasino  and  G. Inglese , Stability of the solutions of an inverse problem for Laplace's equation in a thin strip, Numer. Func. Anal. Opt., 22 (2001) , 549-560.  doi: 10.1081/NFA-100105307.
      D. Fujiwara , Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc.Japan Acad., 43 (1967) , 82-86.  doi: 10.3792/pja/1195521686.
      P. Germain, Thèse de doctorat: Solutions fortes, solutions faibles d'équations aux dérivées partielles d'évolution, Ecole polytechnique France, 2005.
      L. Hörmander, The Analysis of Partial Differential Operators, 2, 2d ed: Springer-Verlag, Berlin, 1990.
      G. Inglese , An inverse problem in corrosion detection, Inverse Probl., 13 (1977) , 977-994.  doi: 10.1088/0266-5611/13/4/006.
      M. Jaoua, S. Chaabane, C. Elhechmi, J. Leblond, M. Mahjoub and J. R. Partington, On some robust algorithms for the Robin inverse problem. International conference in honor of Claude Lobry, 2007.
      B. Jin  and  X. Lu , Numerical identification for a Robin coefficient in parabolic problems, Math. Comp., 81 (2012) , 1369-1398.  doi: 10.1090/S0025-5718-2012-02559-2.
      B. Jin  and  J. Zou , Numerical estimation of the Robin coefficient in a stationary diffusion equation, IMA J. Numer. Anal., 30 (2010) , 677-701.  doi: 10.1093/imanum/drn066.
      B. Jin  and  J. Zou , Numerical estimation of piecewise constant Robin coefficient, SIAM J. Control Optim., 48 (2009) , 1977-2002.  doi: 10.1137/070710846.
      P. G. Kaup , F. Santosa  and  M. Vogelius , Method for imaging corrosion damage in thin plates from electrostatic data, Inverse Probl., 12 (1996) , 279-293. 
      F. Lin  and  W. Fang , A linear integral equation approach to the Robin inverse problem, Inverse Probl., 21 (2005) , 1757-1772.  doi: 10.1088/0266-5611/21/5/015.
      A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
      M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag: New York; 1993.
      Z. Sun , Y. Jiao , B. Jin  and  X. Lu , Numerical identification of a sparse Robin coefficient, Adv. Comput. Math., 41 (2015) , 131-148.  doi: 10.1007/s10444-014-9352-5.
      F. M. White, Heat and Mass Transfer: Addison-Wesley, Reading, MA, 1988.
      Y. Xu  and  J. Zou , Analysis of an adaptive finite element method for recovering the Robin coefficient, SIAM J. Control Optimiz., 53 (2015) , 622-644.  doi: 10.1137/130941742.
      F. Yang , L. Yan  and  T. Wei , The identification of a Robin coefficient by a conjugate gradient method, Int. J. Numer. Meth. Engng., 78 (2009) , 800-816.  doi: 10.1002/nme.2507.
  • 加载中

Article Metrics

HTML views(1131) PDF downloads(293) Cited by(0)

Access History

Other Articles By Authors

  • on this site
  • on Google Scholar



    DownLoad:  Full-Size Img  PowerPoint