September  2019, 9(3): 509-515. doi: 10.3934/mcrf.2019023

Determining the shape of a solid of revolution

Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

Received  June 2017 Revised  May 2018 Published  April 2019

We show how to reconstruct the shape of a solid of revolution by measuring its temperature on the boundary. This inverse problem reduces to finding a coefficient of a parabolic equation from values of the trace of its solution on the boundary. This is achieved by using the inverse spectral theory of the string, as developed by M.G. Krein, which provides uniqueness and also a reconstruction algorithm.

Citation: Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023
References:
[1]

S. A. AvdoninV.S. Mikhaylov and K. Ramdani, Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements, IMA J. Math. Control Inform., 31 (2014), 137-150.  doi: 10.1093/imamci/dnt009.  Google Scholar

[2]

S. A. Avdonin and V.S. Mikhaylov, Spectral estimation problem in infinite dimensional spaces. Zap. Nauchn. Semin. POMI, 422, 5-18, 2014, J. Math. Sci. (N.Y.), 206 (2015), 3,231–240. doi: 10.1007/s10958-015-2307-7.  Google Scholar

[3]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 11, 3911–3921. doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[4]

A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 4,775–791. doi: 10.3934/ipi.2011.5.775.  Google Scholar

[5]

A. Boumenir and Vu Kim Tuan, Recovery of the heat equation from a single boundary measurement, Applicable Analysis, 10 (2018), 1667-1676.  doi: 10.1080/00036811.2017.1332760.  Google Scholar

[6]

S. J. CoxM. Embree and J.M. Hokanson, One can hear the composition of a string: experiments with an inverse eigenvalue problem, SIAM Rev., 54 (2012), 157-178.  doi: 10.1137/080731037.  Google Scholar

[7]

H. Dym, and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover, 2008.  Google Scholar

[8]

I. S. Kac, and M.G. Krein, On the spectral functions of the String, Amer. Math. Soc., Transl., (2), 103 (1974), 19–102. doi: 10.1090/trans2/103/02.  Google Scholar

[9]

V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, Six Papers in Analysis, Amer. Math. Soc.(2), 101 (1973), 1–104.  Google Scholar

[10]

A. I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Chapman Hall/CRC, Pure and Applied Mathematics, (2000).  Google Scholar

[11]

G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem., Springer Lect. Notes Phys., 85 (1978) 123–33.  Google Scholar

[12]

L. Yang. J.N. Yu. Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Applied Mathematical Modeling, 32 10, (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025.  Google Scholar

show all references

References:
[1]

S. A. AvdoninV.S. Mikhaylov and K. Ramdani, Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements, IMA J. Math. Control Inform., 31 (2014), 137-150.  doi: 10.1093/imamci/dnt009.  Google Scholar

[2]

S. A. Avdonin and V.S. Mikhaylov, Spectral estimation problem in infinite dimensional spaces. Zap. Nauchn. Semin. POMI, 422, 5-18, 2014, J. Math. Sci. (N.Y.), 206 (2015), 3,231–240. doi: 10.1007/s10958-015-2307-7.  Google Scholar

[3]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 11, 3911–3921. doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[4]

A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 4,775–791. doi: 10.3934/ipi.2011.5.775.  Google Scholar

[5]

A. Boumenir and Vu Kim Tuan, Recovery of the heat equation from a single boundary measurement, Applicable Analysis, 10 (2018), 1667-1676.  doi: 10.1080/00036811.2017.1332760.  Google Scholar

[6]

S. J. CoxM. Embree and J.M. Hokanson, One can hear the composition of a string: experiments with an inverse eigenvalue problem, SIAM Rev., 54 (2012), 157-178.  doi: 10.1137/080731037.  Google Scholar

[7]

H. Dym, and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover, 2008.  Google Scholar

[8]

I. S. Kac, and M.G. Krein, On the spectral functions of the String, Amer. Math. Soc., Transl., (2), 103 (1974), 19–102. doi: 10.1090/trans2/103/02.  Google Scholar

[9]

V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, Six Papers in Analysis, Amer. Math. Soc.(2), 101 (1973), 1–104.  Google Scholar

[10]

A. I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Chapman Hall/CRC, Pure and Applied Mathematics, (2000).  Google Scholar

[11]

G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem., Springer Lect. Notes Phys., 85 (1978) 123–33.  Google Scholar

[12]

L. Yang. J.N. Yu. Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Applied Mathematical Modeling, 32 10, (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025.  Google Scholar

[1]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[4]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[5]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[6]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[7]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[10]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[11]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[12]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[13]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[14]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[15]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[16]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[17]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[18]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (81)
  • HTML views (519)
  • Cited by (0)

Other articles
by authors

[Back to Top]