[1]
|
M. K. Banda and M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws, Mathematical Control and Related Fields, 3 (2013), 121-142.
doi: 10.3934/mcrf.2013.3.121.
|
[2]
|
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Networks and Heterogeneous Media, 1 (2006), 41-56.
doi: 10.3934/nhm.2006.1.41.
|
[3]
|
G. P. Barker, A. Berman and R. J. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear and Multilinear Algebra, 5 (1978), 249-256.
doi: 10.1080/03081087808817203.
|
[4]
|
G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-d Hyperbolic Systems, 1st edition, Progress in nonlinear differential equations and their applications, Birkhäuser, Switzerland, 2016.
doi: 10.1007/978-3-319-32062-5.
|
[5]
|
J.-M. Coron, Local controllability of a 1-d tank containing a fluid modeled by the shallow water equations, ESAIM: Control, Optim. and Calculus of Variations, 8 (2002), 513-554.
doi: 10.1051/cocv:2002050.
|
[6]
|
J.-M. Coron, Control and Nonlinearity, vol. 136 of Mathematical surveys and monographs, Providence, RI, 2007.
|
[7]
|
J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasilinear hyperbolic systems: Lyapunov stability for the $C^1$-norm, SIAM Journal on Control and Optimization, 53 (2015), 1464-1483.
doi: 10.1137/14097080X.
|
[8]
|
J.-M. Coron, G. Bastin and B. d'Andréa-Novel, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Transactions on Automatic Control, 52 (2007), 2-11.
doi: 10.1109/TAC.2006.887903.
|
[9]
|
J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Boundary feedback control and Lyapunov stability analysis for physical networks of 2$\times$2 hyperbolic balance laws, Proceedings of the 47th IEEE Conference on decision and Control, (2008), 1454-1458.
|
[10]
|
J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM Journal on Control and Optimization, 47 (2008), 1460-1498.
doi: 10.1137/070706847.
|
[11]
|
J.-M. Coron, G. Bastin and B. d'Andréa-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel, Networks and Heterog. Media, 4 (2009), 177-187.
doi: 10.3934/nhm.2009.4.177.
|
[12]
|
J.-M. Coron, G. Bastin, B. d'Andréa-Novel and B. Haut, Lyapunov stability analysis of networks of scalar conservation laws, Networks and Heterogeneous Media, 2 (2007), 751-759.
doi: 10.3934/nhm.2007.2.751.
|
[13]
|
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, A series of comprehensive studies in mathematics, Springer, Providence, RI, 2010.
doi: 10.1007/978-3-642-04048-1.
|
[14]
|
J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica, 39 (2003), 1365-1376.
doi: 10.1016/S0005-1098(03)00109-2.
|
[15]
|
M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Networks and Heterogeneous Media, 5 (2010), 691-709.
doi: 10.3934/nhm.2010.5.691.
|
[16]
|
M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optim. and Calculus of Variations, 17 (2011), 28-51.
doi: 10.1051/cocv/2009035.
|
[17]
|
M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 20 (2003), 1-11.
doi: 10.1016/S0294-1449(02)00004-5.
|
[18]
|
M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 257-270.
doi: 10.1016/j.anihpc.2008.01.002.
|
[19]
|
M. Gugat, G. Leugering and G. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Science, 27 (2004), 781-802.
doi: 10.1002/mma.471.
|
[20]
|
M. Gugat, G. Leugering, S. Tamasoiu and K. Wang, $H^2$-stabilization of the isothermal Euler equations: A Lyapunov function approach, Chin. Ann. Math., 33 (2012), 479-500.
doi: 10.1007/s11401-012-0727-y.
|
[21]
|
M. Gugat, L. Rosier and V. Perrollaz, Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms, Journal of Evolution Equations, 18 (2018), 1471-1500.
doi: 10.1007/s00028-018-0449-z.
|
[22]
|
H. K. Khalil, Nonlinear Control, Pearson Education, 2015.
|
[23]
|
G. Leugering and G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM Journal on Control and Optimization, 41 (2002), 164-180.
doi: 10.1137/S0363012900375664.
|
[24]
|
R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 1st edition, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.
|
[25]
|
P. Schillen and S. Göttlich, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, European Journal of Control, 35 (2017), 11-18.
doi: 10.1016/j.ejcon.2017.02.002.
|
[26]
|
A. Zlotnik, M. Chertkov and S. Backhaus, Optimal control of transient flow in natural gas networks, 54th IEEE Conference on Decision and Control (CDC), (2015), 4563-4570.
doi: 10.1109/CDC.2015.7402932.
|