March  2020, 10(1): 1-26. doi: 10.3934/mcrf.2019027

Quantitative approximation properties for the fractional heat equation

1. 

Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04105 Leipzig, Germany

2. 

Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

* Corresponding author: Angkana Rüland

Received  February 2018 Revised  February 2018 Published  March 2020 Early access  April 2019

In this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain qualitative approximation results from [9]. Using propagation of smallness arguments, we then provide bounds on the cost of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions.

Citation: Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control and Related Fields, 2020, 10 (1) : 1-26. doi: 10.3934/mcrf.2019027
References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.

[2]

U. Biccari and V. Hernández-Santamarıa, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA Journal of Mathematical Control and Information.

[3]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, Recent Advances in PDEs: Analysis, Numerics and Control. Springer, Cham, 2018,233-249.

[4]

F. E. Browder, Approximation by solutions of partial differential equations, American Journal of Mathematics, 84 (1962), 134-160.  doi: 10.2307/2372809.

[5]

F. E. Browder, Functional analysis and partial differential equations. Ⅱ, Mathematische Annalen, 145 (1961/1962), 81-226.  doi: 10.1007/BF01342796.

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 31, Elsevier, 2014, 23–53. doi: 10.1016/j.anihpc.2013.02.001.

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[8]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 33, Elsevier, 2016, 767–807. doi: 10.1016/j.anihpc.2015.01.004.

[9]

S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, The Journal of Geometric Analysis, 2018, 1-28.

[10]

S. DipierroO. Savin and E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc. (JEMS), 19 (2017), 957-966.  doi: 10.4171/JEMS/684.

[11]

T. Duyckaerts and L. Miller, Resolvent conditions for the control of parabolic equations, Journal of Functional Analysis, 263 (2012), 3641-3673.  doi: 10.1016/j.jfa.2012.09.003.

[12]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, English edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.

[13]

C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.

[14]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Communications in Partial Differential Equations, 38 (2013), 1539-1573.  doi: 10.1080/03605302.2013.808211.

[15]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5 (2000), 465-514. 

[16]

T. Ghosh, Y.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923–1961, arXiv: 1708.00654. doi: 10.1080/03605302.2017.1390681.

[17]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv preprint, arXiv: 1609.09248, to appear in Analysis and PDE.

[18]

G. Grubb, Regularity in $L^p$ Sobolev spaces of solutions to fractional heat equations, Journal of Functional Analysis, 274 (2018), 2634-2660.  doi: 10.1016/j.jfa.2017.12.011.

[19]

V. Isakov, Inverse Source Problems, 34, American Mathematical Soc., 1990. doi: 10.1090/surv/034.

[20]

M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, Comptes Rendus Mathematique, 349 (2011), 637-640.  doi: 10.1016/j.crma.2011.04.014.

[21]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183-212. 

[22]

H. Koch, A. Rüland and W. Shi, Higher regularity for the fractional thin obstacle problem, Adv. Differential Equations, 22 (2017), 793–866, arXiv: 1605.06662.

[23]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus and Applied Analysis, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.

[24]

P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Communications on Pure and Applied Mathematics, 9 (1956), 747-766.  doi: 10.1002/cpa.3160090407.

[25]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.

[26]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete & Continuous Dynamical Systems-A, 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.

[27]

J.-L. Lions, Remarks on approximate controllability, Journal dAnalyse Mathématique, 59 (1992), 103–116. doi: 10.1007/BF02790220.

[28]

S. Łojasiewicz, Sur le problème de la division, Studia Math., 18 (1959), 87-136.  doi: 10.4064/sm-18-1-87-136.

[29]

S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM journal on Control and Optimization, 44 (2006), 1950-1972.  doi: 10.1137/S036301290444263X.

[30]

L. Miller, On the controllability of anomalous diffusions generated by the fractional Laplacian, Mathematics of Control, Signals and Systems, 18 (2006), 260-271.  doi: 10.1007/s00498-006-0003-3.

[31]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 1465-1485.  doi: 10.3934/dcdsb.2010.14.1465.

[32]

K.-D. Phung, Note on the cost of the approximate controllability for the heat equation with potential, Journal of Mathematical Analysis and Applications, 295 (2004), 527-538.  doi: 10.1016/j.jmaa.2004.03.059.

[33]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Analysis, 10 (1995), 95-115. 

[34]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat, 60 (2016), 3-26. 

[35]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials, Communications in Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.

[36]

A. Rüland, Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms, arXiv preprint, arXiv: 1708.04285, to appear in Revista Matemática Iberoamericana.

[37]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, arXiv Preprint, August.

[38]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21pp. doi: 10.1088/1361-6420/aaac5a.

[39]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.

[40]

H. Yu, Unique continuation for fractional orders of elliptic equations, Ann. PDE, 3 (2017), Art. 16, 21 pp, arXiv: 1609.01376. doi: 10.1007/s40818-017-0033-9.

[41]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 527-621.  doi: 10.1016/S1874-5717(07)80010-7.

show all references

References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.

[2]

U. Biccari and V. Hernández-Santamarıa, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA Journal of Mathematical Control and Information.

[3]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, Recent Advances in PDEs: Analysis, Numerics and Control. Springer, Cham, 2018,233-249.

[4]

F. E. Browder, Approximation by solutions of partial differential equations, American Journal of Mathematics, 84 (1962), 134-160.  doi: 10.2307/2372809.

[5]

F. E. Browder, Functional analysis and partial differential equations. Ⅱ, Mathematische Annalen, 145 (1961/1962), 81-226.  doi: 10.1007/BF01342796.

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 31, Elsevier, 2014, 23–53. doi: 10.1016/j.anihpc.2013.02.001.

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[8]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 33, Elsevier, 2016, 767–807. doi: 10.1016/j.anihpc.2015.01.004.

[9]

S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, The Journal of Geometric Analysis, 2018, 1-28.

[10]

S. DipierroO. Savin and E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc. (JEMS), 19 (2017), 957-966.  doi: 10.4171/JEMS/684.

[11]

T. Duyckaerts and L. Miller, Resolvent conditions for the control of parabolic equations, Journal of Functional Analysis, 263 (2012), 3641-3673.  doi: 10.1016/j.jfa.2012.09.003.

[12]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, English edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.

[13]

C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.

[14]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Communications in Partial Differential Equations, 38 (2013), 1539-1573.  doi: 10.1080/03605302.2013.808211.

[15]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5 (2000), 465-514. 

[16]

T. Ghosh, Y.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923–1961, arXiv: 1708.00654. doi: 10.1080/03605302.2017.1390681.

[17]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv preprint, arXiv: 1609.09248, to appear in Analysis and PDE.

[18]

G. Grubb, Regularity in $L^p$ Sobolev spaces of solutions to fractional heat equations, Journal of Functional Analysis, 274 (2018), 2634-2660.  doi: 10.1016/j.jfa.2017.12.011.

[19]

V. Isakov, Inverse Source Problems, 34, American Mathematical Soc., 1990. doi: 10.1090/surv/034.

[20]

M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, Comptes Rendus Mathematique, 349 (2011), 637-640.  doi: 10.1016/j.crma.2011.04.014.

[21]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183-212. 

[22]

H. Koch, A. Rüland and W. Shi, Higher regularity for the fractional thin obstacle problem, Adv. Differential Equations, 22 (2017), 793–866, arXiv: 1605.06662.

[23]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus and Applied Analysis, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.

[24]

P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Communications on Pure and Applied Mathematics, 9 (1956), 747-766.  doi: 10.1002/cpa.3160090407.

[25]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.

[26]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete & Continuous Dynamical Systems-A, 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.

[27]

J.-L. Lions, Remarks on approximate controllability, Journal dAnalyse Mathématique, 59 (1992), 103–116. doi: 10.1007/BF02790220.

[28]

S. Łojasiewicz, Sur le problème de la division, Studia Math., 18 (1959), 87-136.  doi: 10.4064/sm-18-1-87-136.

[29]

S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM journal on Control and Optimization, 44 (2006), 1950-1972.  doi: 10.1137/S036301290444263X.

[30]

L. Miller, On the controllability of anomalous diffusions generated by the fractional Laplacian, Mathematics of Control, Signals and Systems, 18 (2006), 260-271.  doi: 10.1007/s00498-006-0003-3.

[31]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 1465-1485.  doi: 10.3934/dcdsb.2010.14.1465.

[32]

K.-D. Phung, Note on the cost of the approximate controllability for the heat equation with potential, Journal of Mathematical Analysis and Applications, 295 (2004), 527-538.  doi: 10.1016/j.jmaa.2004.03.059.

[33]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Analysis, 10 (1995), 95-115. 

[34]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat, 60 (2016), 3-26. 

[35]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials, Communications in Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.

[36]

A. Rüland, Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms, arXiv preprint, arXiv: 1708.04285, to appear in Revista Matemática Iberoamericana.

[37]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, arXiv Preprint, August.

[38]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21pp. doi: 10.1088/1361-6420/aaac5a.

[39]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.

[40]

H. Yu, Unique continuation for fractional orders of elliptic equations, Ann. PDE, 3 (2017), Art. 16, 21 pp, arXiv: 1609.01376. doi: 10.1007/s40818-017-0033-9.

[41]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 527-621.  doi: 10.1016/S1874-5717(07)80010-7.

Figure 1.  The annulus from the proof of Corollary 1. The shaded area corresponds to the annulus $ A_{R_1(\tilde{k}_1),R_2(\tilde{k}_1)}(\tilde{k}_1) $ with $ \tilde{k}_1 $ chosen to be $ i|k_0| $. The bold red line (see the online version for a colour figures) indicates the discontinuity line of the function $ e^{s_1 \log(k_1^2 + |k_0|^2)} $
[1]

María Ángeles García-Ferrero, Angkana Rüland, Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems and Imaging, 2022, 16 (1) : 251-281. doi: 10.3934/ipi.2021049

[2]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[3]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[4]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems and Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[5]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[6]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[7]

Alfredo Miranda, Julio D. Rossi. A game theoretical approximation for a parabolic/elliptic system with different operators. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022034

[8]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[9]

Angkana Rüland, Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems and Imaging, 2019, 13 (5) : 1023-1044. doi: 10.3934/ipi.2019046

[10]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[11]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[12]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems and Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[13]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[14]

Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022017

[15]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[16]

Rajesh Dhayal, Muslim Malik, Syed Abbas, Anil Kumar, Rathinasamy Sakthivel. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations and Control Theory, 2021, 10 (2) : 411-429. doi: 10.3934/eect.2020073

[17]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems and Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[20]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (423)
  • HTML views (701)
  • Cited by (5)

Other articles
by authors

[Back to Top]