[1]
|
H. J. C. Barbosa and T. J. R. Hughes, The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Engrg., 85 (1991), 109-128.
doi: 10.1016/0045-7825(91)90125-P.
|
[2]
|
L. Baudouin, M. De Buhan and S. Ervedoza, Global Carleman estimates for waves and applications, Comm. Partial Differential Equations, 38 (2013), 823-859.
doi: 10.1080/03605302.2013.771659.
|
[3]
|
E. Bécache, P. Joly and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal., 37 (2000), 1053-1084.
doi: 10.1137/S0036142998345499.
|
[4]
|
____, A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal., 39 (2002), 2109-2132.
doi: 10.1137/S0036142999359189.
|
[5]
|
D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-36519-5.
|
[6]
|
C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.
doi: 10.1007/s00211-005-0651-0.
|
[7]
|
D. Chapelle and K.-J. Bathe, The inf-sup test, Comput. & Structures, 47 (1993), 537-545.
doi: 10.1016/0045-7949(93)90340-J.
|
[8]
|
P. G. Ciarlet, The finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002, Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
doi: 10.1137/1.9780898719208.
|
[9]
|
N. Cîndea and A. Münch, Inverse problems for linear hyperbolic equations using mixed formulations, Inverse Problems, 31 (2015), 075001, 38pp.
doi: 10.1088/0266-5611/31/7/075001.
|
[10]
|
____, A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations, Calcolo, 52 (2015), 245-288.
doi: 10.1007/s10092-014-0116-x.
|
[11]
|
R Codina, Finite element approximation of the hyperbolic wave equation in mixed form, Comput. Methods Appl. Mech. Engrg., 197 (2008), 1305-1322.
doi: 10.1016/j.cma.2007.11.006.
|
[12]
|
S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5808-1.
|
[13]
|
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998.
|
[14]
|
R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103 (1992), 189-221.
doi: 10.1016/0021-9991(92)90396-G.
|
[15]
|
R. Glowinski, W. Kinton and M. F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation, Internat. J. Numer. Methods Engrg., 27 (1989), 623-635.
doi: 10.1002/nme.1620270313.
|
[16]
|
R. Glowinski, C. H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.
doi: 10.1007/BF03167859.
|
[17]
|
F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013.
|
[18]
|
V. Komornik, Exact Controllability and Stabilization, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, The multiplier method.
|
[19]
|
A. Kröner, K. Kunisch and B. Vexler, Semismooth Newton methods for optimal control of the wave equation with control constraints, SIAM J. Control Optim., 49 (2011), 830-858.
doi: 10.1137/090766541.
|
[20]
|
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8, Masson, Paris, 1988, Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.
|
[21]
|
A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN Math. Model. Numer. Anal., 39 (2005), 377-418.
doi: 10.1051/m2an:2005012.
|
[22]
|
A. Münch and D. A. Souza, Inverse problems for linear parabolic equations using mixed formulations-Part 1: Theoretical analysis, J. Inverse Ill-Posed Probl., 25 (2017), 445-468.
doi: 10.1515/jiip-2015-0112.
|
[23]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|