March  2020, 10(1): 89-112. doi: 10.3934/mcrf.2019031

Minimal time of null controllability of two parabolic equations

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France

* Corresponding author

Received  May 2018 Revised  December 2018 Published  April 2019

We consider a one-dimensional 2 × 2 parabolic equations, simultaneously controllable by a localized function in their source term. We also consider a simultaneous boundary control. In each case, we prove the existence of minimal time T0(q) of null controllability, that is to say, the corresponding problem is null controllable at any time T > T0(q) and not null controllable for T < T0(q). We also prove that one can expect any minimal time associated to the boundary control problem.

Citation: Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031
References:
[1]

D. AllonsiusF. Boyer and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, 140 (2018), 857-911.  doi: 10.1007/s00211-018-0983-1.  Google Scholar

[2]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ, 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[3]

F. Ammar KhodjaA. BenabdallahC. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var, 11 (2005), 426-448.  doi: 10.1051/cocv:2005013.  Google Scholar

[4]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal, 267 (2014), 2077-2151.  doi: 10.1016/j.jfa.2014.07.024.  Google Scholar

[5]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J. Math. Anal. Appl, 444 (2016), 1071-1113.  doi: 10.1016/j.jmaa.2016.06.058.  Google Scholar

[6]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa., Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[7]

V. Bernstein, Leçcons sur les Progrès Réscents de la Théorie des Séries de Dirichlet, Gauthier-Villars, Paris, 1933. Google Scholar

[8]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.  Google Scholar

[9]

H. O. Fattorini and D. L. Russell., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal, 43 (1971), 272-292.  doi: 10.1007/BF00250466.  Google Scholar

[10]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math, 32 (1974/75), 45-69.  doi: 10.1090/qam/510972.  Google Scholar

[11]

E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal, 259 (2010), 1720-1758.  doi: 10.1016/j.jfa.2010.06.003.  Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, , Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[13]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math, 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[14]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, volume 120 of Applied Mathematical Sciences, second edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-8474-6.  Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.  Google Scholar

[16]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1987.  Google Scholar

[17]

J. R. Shackell, Overconvergence of Dirichlet series with complex exponents, J. Analyse Math, 22 (1969), 135-170.  doi: 10.1007/BF02786787.  Google Scholar

[18]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[19]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992.  Google Scholar

show all references

References:
[1]

D. AllonsiusF. Boyer and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, 140 (2018), 857-911.  doi: 10.1007/s00211-018-0983-1.  Google Scholar

[2]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ, 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[3]

F. Ammar KhodjaA. BenabdallahC. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var, 11 (2005), 426-448.  doi: 10.1051/cocv:2005013.  Google Scholar

[4]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal, 267 (2014), 2077-2151.  doi: 10.1016/j.jfa.2014.07.024.  Google Scholar

[5]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J. Math. Anal. Appl, 444 (2016), 1071-1113.  doi: 10.1016/j.jmaa.2016.06.058.  Google Scholar

[6]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa., Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[7]

V. Bernstein, Leçcons sur les Progrès Réscents de la Théorie des Séries de Dirichlet, Gauthier-Villars, Paris, 1933. Google Scholar

[8]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.  Google Scholar

[9]

H. O. Fattorini and D. L. Russell., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal, 43 (1971), 272-292.  doi: 10.1007/BF00250466.  Google Scholar

[10]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math, 32 (1974/75), 45-69.  doi: 10.1090/qam/510972.  Google Scholar

[11]

E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal, 259 (2010), 1720-1758.  doi: 10.1016/j.jfa.2010.06.003.  Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, , Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[13]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math, 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[14]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, volume 120 of Applied Mathematical Sciences, second edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-8474-6.  Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.  Google Scholar

[16]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1987.  Google Scholar

[17]

J. R. Shackell, Overconvergence of Dirichlet series with complex exponents, J. Analyse Math, 22 (1969), 135-170.  doi: 10.1007/BF02786787.  Google Scholar

[18]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[19]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[18]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[19]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (183)
  • HTML views (653)
  • Cited by (0)

Other articles
by authors

[Back to Top]