March  2020, 10(1): 113-140. doi: 10.3934/mcrf.2019032

A moment approach for entropy solutions to nonlinear hyperbolic PDEs

1. 

CNRS, LAAS, Université de Toulouse, 7 avenue du colonel Roche, F-31400 Toulouse, France

2. 

Applied Mathematics and Plasma Physics Group and Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, NM 87545 Los Alamos, USA

3. 

Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 4, CZ-16206 Prague, Czechia

4. 

Institute of Mathematics of Toulouse (IMT), Université Paul Sabatier, 118 Route de Narbonne, F-31400, Toulouse, France

* Corresponding author: Swann Marx

Received  July 2018 Revised  February 2019 Published  April 2019

Fund Project: This work was partly funded by the ERC Advanced Grant Taming and by project 16-19526S of the Grant Agency of the Czech Republic. Part of the research of the second author was also supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20180468ER and 20170508DR.

We propose to solve hyperbolic partial differential equations (PDEs) with polynomial flux using a convex optimization strategy.This approach is based on a very weak notion of solution of the nonlinear equation,namely the measure-valued (mv) solution,satisfying a linear equation in the space of Borel measures.The aim of this paper is,first,to provide the conditions that ensure the equivalence between the two formulations and,second,to introduce a method which approximates the infinite-dimensional linear problem by a hierarchy of convex,finite-dimensional,semidefinite programming problems.This result is then illustrated on the celebrated Burgers equation.We also compare our results with an existing numerical scheme,namely the Godunov scheme.

Citation: Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032
References:
[1]

Y. Brenier, Solution by convex minimization of the Cauchy problem for hyperbolic systems of conservation laws with convex entropy, arXiv: 1710.03754, 2017. Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.  Google Scholar

[3]

S. I. Chernyshenko, P. Goulart, D. Huang and A. Papachristodoulou, Polynomial sum of squares in fluid dynamics: A review with a look ahead, Phil. Trans. R. Soc. A, 372 (2014), 20130350, 18pp. doi: 10.1098/rsta.2013.0350.  Google Scholar

[4]

M. Claeys and R. Sepulchre, Reconstructing Trajectories from the Moments of Occupation Measures, Proc. IEEE Conf. on Decision and Control, 2014. Google Scholar

[5]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.  Google Scholar

[6]

J. Dahl, Extending the Conic Optimizer in MOSEK with Semidefinite Cones, Proc. Intl. Symp. Math. Prog., Berlin, 2012. Google Scholar

[7]

C. DeLellisF. Otto and M. Westdickenberg, Minimal entropy conditions for Burgers equation, Quarterly of Applied Mathematics, 62 (2004), 687-700.  doi: 10.1090/qam/2104269.  Google Scholar

[8]

S. DemouliniD. M. A. Stuart and A. E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Archive for Rational Mechanics and Analysis, 205 (2012), 927-961.  doi: 10.1007/s00205-012-0523-6.  Google Scholar

[9]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, Journal of Scientific Computing, 16 (2001), 479-524.  doi: 10.1023/A:1013298408777.  Google Scholar

[10]

R. J. DiPerna, Measure-valued solutions to conservation laws, Archive for Rational Mechanics and Analysis, 88 (1985), 223-270.  doi: 10.1007/BF00752112.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[12] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory,, Cambridge University Press, 1999.  doi: 10.1017/CBO9780511574795.  Google Scholar
[13]

E. Feireisl, M. Lukáčová-Medvid'ová and H. Mizerová., Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions, arXiv: 1803.08401, 2018. Google Scholar

[14]

U. S. FjordholmS. Mishra and E. Tadmor., On the computation of measured-valued solutions, Acta Numerica, 25 (2016), 567-679.   Google Scholar

[15]

U. S. FjordholmR. KäppeliS. Mishra and E. Tadmor, Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Foundations of Computational Mathematics, 17 (2017), 763-827.  doi: 10.1007/s10208-015-9299-z.  Google Scholar

[16]

U. S. FjordholmK. Lye and S. Mishra, Numerical approximation of statistical solutions of scalar conservation laws, SIAM Journal on Numerical Analysis, 56 (2018), 2989-3009.  doi: 10.1137/17M1154874.  Google Scholar

[17]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 89 (1959), 271-306.   Google Scholar

[18]

D. Goluskin, G. Fantuzzi., Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming., arXiv: 1802.08240, 2018. Google Scholar

[19]

L. Gosse and E. Zuazua, Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation, Innovative Algorithms and Analysis, 197-227, Springer INdAM Ser., 16, Springer, Cham, 2017.  Google Scholar

[20]

D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific J. Math., 132 (1988), 35-62.   Google Scholar

[21]

D. Henrion and M. Korda, Convex computation of the region of attraction of polynomial control systems, IEEE Trans. Autom. Control, 59 (2014), 297-312.  doi: 10.1109/TAC.2013.2283095.  Google Scholar

[22]

D. HenrionJ. B. Lasserre and J. Löfberg, Gloptipoly 3: Moments, optimization and semidefinite programming, Optimization Methods & Software, 24 (2009), 761-779.  doi: 10.1080/10556780802699201.  Google Scholar

[23]

D. Henrion and E. Pauwels, Linear conic optimization for nonlinear optimal control, Advances and Trends in Optimization with Engineering Applications, 121-133, MOS-SIAM Ser. Optim., 24, SIAM, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974683.ch10.  Google Scholar

[24]

M. Korda, D. Henrion and J. B. Lasserre, Moments and convex optimization for analysis and control of nonlinear partial differential equations, arXiv: 1804.07565, 2018. Google Scholar

[25]

S. N. Kružkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217-243.   Google Scholar

[26] J. B. Lasserre, Moments, Positive Polynomials and Their Applications,, Imperial College Press, 2010.   Google Scholar
[27]

J. B. LasserreD. HenrionC. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM Journal on Control and Optimization, 47 (2008), 1643-1666.  doi: 10.1137/070685051.  Google Scholar

[28]

P. Lax, Shock waves and entropy, Contributions to nonlinear Functional Analysis, 603-634, Academic Press, New York, 1971.  Google Scholar

[29]

P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Springer Science & Business Media, 2002. doi: 10.1007/978-3-0348-8150-0.  Google Scholar

[30] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge university press, 2002.  doi: 10.1017/CBO9780511791253.  Google Scholar
[31]

V. Magron and C. Prieur, Optimal Control of Linear PDEs using Occupation Measures and SDP Relaxations, IMA Journal of Mathematical Control and Information, 2018. Google Scholar

[32] J. MálekJ. NečasM. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs,, CRC Press, 1996.  doi: 10.1007/978-1-4899-6824-1.  Google Scholar
[33]

M. Mevissen, J. B. Lasserre and D. Henrion, Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations, Proc. IFAC World Congress on Automatic Control, 2011. Google Scholar

[34]

E. Y. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mathematical Notes, 55 (1994), 517-525.  doi: 10.1007/BF02110380.  Google Scholar

[35]

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal, 42 (1993), 969-984.  doi: 10.1512/iumj.1993.42.42045.  Google Scholar

[36]

J. Rubio, The global control of shock waves, Nonlinear Theory of Generalized Functions, 355-369, Erwin Schrödinger Institute, Vienna, 1997. Google Scholar

[37] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves,, Cambridge University Press, 1999.  doi: 10.1017/CBO9780511612374.  Google Scholar
[38]

L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations, 111 (1983), 263-285.   Google Scholar

[39]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 2011.  Google Scholar

show all references

References:
[1]

Y. Brenier, Solution by convex minimization of the Cauchy problem for hyperbolic systems of conservation laws with convex entropy, arXiv: 1710.03754, 2017. Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.  Google Scholar

[3]

S. I. Chernyshenko, P. Goulart, D. Huang and A. Papachristodoulou, Polynomial sum of squares in fluid dynamics: A review with a look ahead, Phil. Trans. R. Soc. A, 372 (2014), 20130350, 18pp. doi: 10.1098/rsta.2013.0350.  Google Scholar

[4]

M. Claeys and R. Sepulchre, Reconstructing Trajectories from the Moments of Occupation Measures, Proc. IEEE Conf. on Decision and Control, 2014. Google Scholar

[5]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.  Google Scholar

[6]

J. Dahl, Extending the Conic Optimizer in MOSEK with Semidefinite Cones, Proc. Intl. Symp. Math. Prog., Berlin, 2012. Google Scholar

[7]

C. DeLellisF. Otto and M. Westdickenberg, Minimal entropy conditions for Burgers equation, Quarterly of Applied Mathematics, 62 (2004), 687-700.  doi: 10.1090/qam/2104269.  Google Scholar

[8]

S. DemouliniD. M. A. Stuart and A. E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Archive for Rational Mechanics and Analysis, 205 (2012), 927-961.  doi: 10.1007/s00205-012-0523-6.  Google Scholar

[9]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, Journal of Scientific Computing, 16 (2001), 479-524.  doi: 10.1023/A:1013298408777.  Google Scholar

[10]

R. J. DiPerna, Measure-valued solutions to conservation laws, Archive for Rational Mechanics and Analysis, 88 (1985), 223-270.  doi: 10.1007/BF00752112.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[12] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory,, Cambridge University Press, 1999.  doi: 10.1017/CBO9780511574795.  Google Scholar
[13]

E. Feireisl, M. Lukáčová-Medvid'ová and H. Mizerová., Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions, arXiv: 1803.08401, 2018. Google Scholar

[14]

U. S. FjordholmS. Mishra and E. Tadmor., On the computation of measured-valued solutions, Acta Numerica, 25 (2016), 567-679.   Google Scholar

[15]

U. S. FjordholmR. KäppeliS. Mishra and E. Tadmor, Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Foundations of Computational Mathematics, 17 (2017), 763-827.  doi: 10.1007/s10208-015-9299-z.  Google Scholar

[16]

U. S. FjordholmK. Lye and S. Mishra, Numerical approximation of statistical solutions of scalar conservation laws, SIAM Journal on Numerical Analysis, 56 (2018), 2989-3009.  doi: 10.1137/17M1154874.  Google Scholar

[17]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 89 (1959), 271-306.   Google Scholar

[18]

D. Goluskin, G. Fantuzzi., Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming., arXiv: 1802.08240, 2018. Google Scholar

[19]

L. Gosse and E. Zuazua, Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation, Innovative Algorithms and Analysis, 197-227, Springer INdAM Ser., 16, Springer, Cham, 2017.  Google Scholar

[20]

D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific J. Math., 132 (1988), 35-62.   Google Scholar

[21]

D. Henrion and M. Korda, Convex computation of the region of attraction of polynomial control systems, IEEE Trans. Autom. Control, 59 (2014), 297-312.  doi: 10.1109/TAC.2013.2283095.  Google Scholar

[22]

D. HenrionJ. B. Lasserre and J. Löfberg, Gloptipoly 3: Moments, optimization and semidefinite programming, Optimization Methods & Software, 24 (2009), 761-779.  doi: 10.1080/10556780802699201.  Google Scholar

[23]

D. Henrion and E. Pauwels, Linear conic optimization for nonlinear optimal control, Advances and Trends in Optimization with Engineering Applications, 121-133, MOS-SIAM Ser. Optim., 24, SIAM, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974683.ch10.  Google Scholar

[24]

M. Korda, D. Henrion and J. B. Lasserre, Moments and convex optimization for analysis and control of nonlinear partial differential equations, arXiv: 1804.07565, 2018. Google Scholar

[25]

S. N. Kružkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217-243.   Google Scholar

[26] J. B. Lasserre, Moments, Positive Polynomials and Their Applications,, Imperial College Press, 2010.   Google Scholar
[27]

J. B. LasserreD. HenrionC. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM Journal on Control and Optimization, 47 (2008), 1643-1666.  doi: 10.1137/070685051.  Google Scholar

[28]

P. Lax, Shock waves and entropy, Contributions to nonlinear Functional Analysis, 603-634, Academic Press, New York, 1971.  Google Scholar

[29]

P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Springer Science & Business Media, 2002. doi: 10.1007/978-3-0348-8150-0.  Google Scholar

[30] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge university press, 2002.  doi: 10.1017/CBO9780511791253.  Google Scholar
[31]

V. Magron and C. Prieur, Optimal Control of Linear PDEs using Occupation Measures and SDP Relaxations, IMA Journal of Mathematical Control and Information, 2018. Google Scholar

[32] J. MálekJ. NečasM. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs,, CRC Press, 1996.  doi: 10.1007/978-1-4899-6824-1.  Google Scholar
[33]

M. Mevissen, J. B. Lasserre and D. Henrion, Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations, Proc. IFAC World Congress on Automatic Control, 2011. Google Scholar

[34]

E. Y. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mathematical Notes, 55 (1994), 517-525.  doi: 10.1007/BF02110380.  Google Scholar

[35]

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal, 42 (1993), 969-984.  doi: 10.1512/iumj.1993.42.42045.  Google Scholar

[36]

J. Rubio, The global control of shock waves, Nonlinear Theory of Generalized Functions, 355-369, Erwin Schrödinger Institute, Vienna, 1997. Google Scholar

[37] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves,, Cambridge University Press, 1999.  doi: 10.1017/CBO9780511612374.  Google Scholar
[38]

L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations, 111 (1983), 263-285.   Google Scholar

[39]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 2011.  Google Scholar

Figure 1.  Approximation of the solution $ y(t,x) $ obtained with our GMP approach, in the case of a shock
Figure 2.  Approximation of the solution $ y(t,x) $ obtained with our GMP approach, in the case of a rarefaction wave
Table 1.  Approximation of $ y(0.75,x) $ with Godunov and GMP
$ x $ 0.1850 0.1855 0.1860 0.1865 0.1870 0.1875 0.1880 0.1885
Godunov 0.9999 0.9991 0.9936 0.9580 0.7647 0.2724 0.0123 0.0000
GMP 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
$ x $ 0.1850 0.1855 0.1860 0.1865 0.1870 0.1875 0.1880 0.1885
Godunov 0.9999 0.9991 0.9936 0.9580 0.7647 0.2724 0.0123 0.0000
GMP 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[13]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[16]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (219)
  • HTML views (746)
  • Cited by (1)

[Back to Top]