March  2020, 10(1): 141-156. doi: 10.3934/mcrf.2019033

Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative

1. 

College of Information Science and Technology, Donghua University, Shanghai 201620, China

2. 

School of Computer Science, China University of Geosciences, Wuhan 430074, China

3. 

School of Engineering (MESA-Lab), University of California, Merced, CA 95343, USA

4. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

* Corresponding author

Received  July 2018 Revised  February 2019 Published  April 2019

Fund Project: The second author is supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (No.CUG170627), the Natural Science Foundation of China (NSFC, No.KZ18W30084) and the Hubei NSFC (No.2017CFB279).

This paper investigates the regional gradient controllability for ultra-slow diffusion processes governed by the time fractional diffusion systems with a Hadamard-Caputo time fractional derivative. Some necessary and sufficient conditions on regional gradient exact and approximate controllability are first given and proved in detail. Secondly, we propose an approach on how to calculate the minimum number of $\omega-$strategic actuators. Moreover, the existence, uniqueness and the concrete form of the optimal controller for the system under consideration are presented by employing the Hilbert Uniqueness Method (HUM) among all the admissible ones. Finally, we illustrate our results by an interesting example.

Citation: Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033
References:
[1]

A. Aacute and D. Castillo-Negrete, Fluid limit of the continuous-time random walk with general Levy jump distribution functions, Physical Review E Statistical Nonlinear and Soft Matter Physics, 76 (2007), 041105. Google Scholar

[2]

S. AbbasM. BenchohraJ. E. Lazreg and Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Solitons and Fractals, 102 (2017), 47-71.  doi: 10.1016/j.chaos.2017.03.010.  Google Scholar

[3] L. AfifiA. El Jai and E. Zerrik, Regional Analysis of Linear Distributed Parameter Systems, Princeton University Press, Princeton, 2005.   Google Scholar
[4]

B. Ahmad, S. K. Ntouyas and J. Tariboon, et al., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer International Publishing, 2017. doi: 10.1007/978-3-319-52141-1.  Google Scholar

[5]

P. L. ButzerA. A. Kilbas and J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269 (2002), 387-400.  doi: 10.1016/S0022-247X(02)00049-5.  Google Scholar

[6]

L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[7]

R. Garra and F. Polito, On some operators involving Hadamard derivatives, Integral Transforms and Special Functions, 24 (2013), 773-782.  doi: 10.1080/10652469.2012.756875.  Google Scholar

[8]

F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, 2018. doi: 10.1007/978-3-319-72896-4.  Google Scholar

[9]

F. GeY. Q. Chen and C. Kou, Regional gradient controllability of sub-diffusion processes, Journal of Mathematical Analysis and Applications, 440 (2016), 865-884.  doi: 10.1016/j.jmaa.2016.03.051.  Google Scholar

[10]

F. GeY. Q. ChenC. Kou and I. Podlubny, On the regional controllability of the sub-diffusion process with Caputo fractional derivative, Fractional Calculus and Applied Analysis, 19 (2016), 1262-1281.  doi: 10.1515/fca-2016-0065.  Google Scholar

[11]

F. GeY. Q. Chen and C. Kou, Regional controllability analysis of fractional diffusion equations with Riemann-Liouville time fractional derivatives, Automatica, 76 (2017), 193-199.  doi: 10.1016/j.automatica.2016.10.018.  Google Scholar

[12]

F. GeY. Q. Chen and C. Kou, Actuator characterisations to achieve approximate controllability for a class of fractional sub-diffusion equations, International Journal of Control, 90 (2017), 1212-1220.  doi: 10.1080/00207179.2016.1163619.  Google Scholar

[13]

Z. Gong, D. Qian and C. Li, et al., On the Hadamard type fractional differential system, Fractional Dynamics and Control. Springer, New York, (2012), 159–171. doi: 10.1007/978-1-4614-0457-6_13.  Google Scholar

[14]

V. Govindaraj and R. K. George, Controllability of fractional dynamical systems–-A functional analytic approach, Mathematical Control and Related Fields, 7 (2017), 537-562.  doi: 10.3934/mcrf.2017020.  Google Scholar

[15]

J. R. GraefS. R. Grace and E. Tunc, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives, Fractional Calculus and Applied Analysis, 20 (2017), 71-87.  doi: 10.1515/fca-2017-0004.  Google Scholar

[16]

J. Hadamard, Essai sur letude des fonctions donnees par leur developpement de Taylor, Journal de Mathematiques Pures et Appliquees, 8 (1892), 101–186 (In French). Google Scholar

[17] A. EI Jai and A. J. Pritchard, Sensors and Controls in the Analysis of Distributed Systems, Halsted Press, 1988.   Google Scholar
[18]

F. JaradT. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012 (2012), 1-8.  doi: 10.1186/1687-1847-2012-142.  Google Scholar

[19]

Q. Katatbeha and A. Al-Omarib, Existence and uniqueness of mild and classical solutions to fractional order Hadamard-type Cauchy problem, Journal of Nonlinear Science and Applications, 9 (2016), 827-835.  doi: 10.22436/jnsa.009.03.11.  Google Scholar

[20]

F. A. KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Mathematical Control and Related Fields, 6 (2016), 185-216.  doi: 10.3934/mcrf.2016001.  Google Scholar

[21]

F. A. KhodjaA. BenabdallahM. G. Burgos and L. Teresa, Recent results on the controllability of linear coupled parabolic problems–-A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[22]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.  Google Scholar

[23]

A. A. Kilbas, Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 38 (2001), 1191-1204.   Google Scholar

[24]

H. LeivaN. Merentes and J. L. Sanchez, Approximate controllability of semilinear reaction diffusion equations, Mathematical Control and Related Fields, 2 (2012), 171-182.  doi: 10.3934/mcrf.2012.2.171.  Google Scholar

[25]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Vol. 170, Springer Verlag, 1971.  Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[27]

Y. Liu, Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects, Electronic Journal of Differential Equations, 296 (2016), 1-177.   Google Scholar

[28]

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Mathematics of Control Signals and Systems, 28 (2016), Art. 10, 21 pp. doi: 10.1007/s00498-016-0162-9.  Google Scholar

[29]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, Physics, (2007), 312–350. Google Scholar

[30]

F. Mainardi, A. Mura and G. Pagnini, et al., Sub-diffusion equations of fractional order and their fundamental solutions, Mathematical Methods in Engineering. Springer, (2007), 23–55. Google Scholar

[31]

T. Mur and H. R. Henriquez, Relative controllability of linear systems of fractional order with delay, Mathematical Control and Related Fields, 5 (2015), 845-858.  doi: 10.3934/mcrf.2015.5.845.  Google Scholar

[32] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.   Google Scholar
[33]

Y. Povstenko, Fractional Thermoelasticity, Springer International Publishing, 2015. doi: 10.1007/978-3-319-15335-3.  Google Scholar

[34]

A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM Journal on Control and Optimization, 16 (1978), 535-545.  doi: 10.1137/0316036.  Google Scholar

[35]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[36]

J. Tariboon, S. K. Ntouyas and C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Advances in Mathematical Physics, 2014 (2014), Art. ID 372749, 15 pp. doi: 10.1155/2014/372749.  Google Scholar

[37]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002), 461-580.  doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[38]

C. Zeng and Y. Q. Chen, Optimal random search, fractional dynamics and fractional calculus, Fractional Calculus and Applied Analysis, 17 (2014), 321-332.  doi: 10.2478/s13540-014-0171-7.  Google Scholar

[39]

E. ZerrikA. Boutoulout and A. Kamal, Regional gradient controllability of parabolic systems, International Journal of Applied Mathematics and Computer Science, 9 (1999), 767-787.   Google Scholar

[40]

E. ZerrikA. Kamal and A. Boutoulout, Regional gradient controllability and actuators, International Journal of Systems Science, 33 (2002), 239-246.  doi: 10.1080/00207720110073163.  Google Scholar

[41]

E. Zerrik and F. Ghafrani, Regional gradient-constrained control problem. Approaches and simulations, Journal of Dynamical and Control Systems, 9 (2003), 585-599.  doi: 10.1023/A:1025652520034.  Google Scholar

[42]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Computers and Mathematics with Applications, 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

show all references

References:
[1]

A. Aacute and D. Castillo-Negrete, Fluid limit of the continuous-time random walk with general Levy jump distribution functions, Physical Review E Statistical Nonlinear and Soft Matter Physics, 76 (2007), 041105. Google Scholar

[2]

S. AbbasM. BenchohraJ. E. Lazreg and Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Solitons and Fractals, 102 (2017), 47-71.  doi: 10.1016/j.chaos.2017.03.010.  Google Scholar

[3] L. AfifiA. El Jai and E. Zerrik, Regional Analysis of Linear Distributed Parameter Systems, Princeton University Press, Princeton, 2005.   Google Scholar
[4]

B. Ahmad, S. K. Ntouyas and J. Tariboon, et al., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer International Publishing, 2017. doi: 10.1007/978-3-319-52141-1.  Google Scholar

[5]

P. L. ButzerA. A. Kilbas and J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269 (2002), 387-400.  doi: 10.1016/S0022-247X(02)00049-5.  Google Scholar

[6]

L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[7]

R. Garra and F. Polito, On some operators involving Hadamard derivatives, Integral Transforms and Special Functions, 24 (2013), 773-782.  doi: 10.1080/10652469.2012.756875.  Google Scholar

[8]

F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, 2018. doi: 10.1007/978-3-319-72896-4.  Google Scholar

[9]

F. GeY. Q. Chen and C. Kou, Regional gradient controllability of sub-diffusion processes, Journal of Mathematical Analysis and Applications, 440 (2016), 865-884.  doi: 10.1016/j.jmaa.2016.03.051.  Google Scholar

[10]

F. GeY. Q. ChenC. Kou and I. Podlubny, On the regional controllability of the sub-diffusion process with Caputo fractional derivative, Fractional Calculus and Applied Analysis, 19 (2016), 1262-1281.  doi: 10.1515/fca-2016-0065.  Google Scholar

[11]

F. GeY. Q. Chen and C. Kou, Regional controllability analysis of fractional diffusion equations with Riemann-Liouville time fractional derivatives, Automatica, 76 (2017), 193-199.  doi: 10.1016/j.automatica.2016.10.018.  Google Scholar

[12]

F. GeY. Q. Chen and C. Kou, Actuator characterisations to achieve approximate controllability for a class of fractional sub-diffusion equations, International Journal of Control, 90 (2017), 1212-1220.  doi: 10.1080/00207179.2016.1163619.  Google Scholar

[13]

Z. Gong, D. Qian and C. Li, et al., On the Hadamard type fractional differential system, Fractional Dynamics and Control. Springer, New York, (2012), 159–171. doi: 10.1007/978-1-4614-0457-6_13.  Google Scholar

[14]

V. Govindaraj and R. K. George, Controllability of fractional dynamical systems–-A functional analytic approach, Mathematical Control and Related Fields, 7 (2017), 537-562.  doi: 10.3934/mcrf.2017020.  Google Scholar

[15]

J. R. GraefS. R. Grace and E. Tunc, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives, Fractional Calculus and Applied Analysis, 20 (2017), 71-87.  doi: 10.1515/fca-2017-0004.  Google Scholar

[16]

J. Hadamard, Essai sur letude des fonctions donnees par leur developpement de Taylor, Journal de Mathematiques Pures et Appliquees, 8 (1892), 101–186 (In French). Google Scholar

[17] A. EI Jai and A. J. Pritchard, Sensors and Controls in the Analysis of Distributed Systems, Halsted Press, 1988.   Google Scholar
[18]

F. JaradT. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012 (2012), 1-8.  doi: 10.1186/1687-1847-2012-142.  Google Scholar

[19]

Q. Katatbeha and A. Al-Omarib, Existence and uniqueness of mild and classical solutions to fractional order Hadamard-type Cauchy problem, Journal of Nonlinear Science and Applications, 9 (2016), 827-835.  doi: 10.22436/jnsa.009.03.11.  Google Scholar

[20]

F. A. KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Mathematical Control and Related Fields, 6 (2016), 185-216.  doi: 10.3934/mcrf.2016001.  Google Scholar

[21]

F. A. KhodjaA. BenabdallahM. G. Burgos and L. Teresa, Recent results on the controllability of linear coupled parabolic problems–-A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[22]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.  Google Scholar

[23]

A. A. Kilbas, Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 38 (2001), 1191-1204.   Google Scholar

[24]

H. LeivaN. Merentes and J. L. Sanchez, Approximate controllability of semilinear reaction diffusion equations, Mathematical Control and Related Fields, 2 (2012), 171-182.  doi: 10.3934/mcrf.2012.2.171.  Google Scholar

[25]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Vol. 170, Springer Verlag, 1971.  Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[27]

Y. Liu, Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects, Electronic Journal of Differential Equations, 296 (2016), 1-177.   Google Scholar

[28]

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Mathematics of Control Signals and Systems, 28 (2016), Art. 10, 21 pp. doi: 10.1007/s00498-016-0162-9.  Google Scholar

[29]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, Physics, (2007), 312–350. Google Scholar

[30]

F. Mainardi, A. Mura and G. Pagnini, et al., Sub-diffusion equations of fractional order and their fundamental solutions, Mathematical Methods in Engineering. Springer, (2007), 23–55. Google Scholar

[31]

T. Mur and H. R. Henriquez, Relative controllability of linear systems of fractional order with delay, Mathematical Control and Related Fields, 5 (2015), 845-858.  doi: 10.3934/mcrf.2015.5.845.  Google Scholar

[32] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.   Google Scholar
[33]

Y. Povstenko, Fractional Thermoelasticity, Springer International Publishing, 2015. doi: 10.1007/978-3-319-15335-3.  Google Scholar

[34]

A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM Journal on Control and Optimization, 16 (1978), 535-545.  doi: 10.1137/0316036.  Google Scholar

[35]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[36]

J. Tariboon, S. K. Ntouyas and C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Advances in Mathematical Physics, 2014 (2014), Art. ID 372749, 15 pp. doi: 10.1155/2014/372749.  Google Scholar

[37]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002), 461-580.  doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[38]

C. Zeng and Y. Q. Chen, Optimal random search, fractional dynamics and fractional calculus, Fractional Calculus and Applied Analysis, 17 (2014), 321-332.  doi: 10.2478/s13540-014-0171-7.  Google Scholar

[39]

E. ZerrikA. Boutoulout and A. Kamal, Regional gradient controllability of parabolic systems, International Journal of Applied Mathematics and Computer Science, 9 (1999), 767-787.   Google Scholar

[40]

E. ZerrikA. Kamal and A. Boutoulout, Regional gradient controllability and actuators, International Journal of Systems Science, 33 (2002), 239-246.  doi: 10.1080/00207720110073163.  Google Scholar

[41]

E. Zerrik and F. Ghafrani, Regional gradient-constrained control problem. Approaches and simulations, Journal of Dynamical and Control Systems, 9 (2003), 585-599.  doi: 10.1023/A:1025652520034.  Google Scholar

[42]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Computers and Mathematics with Applications, 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[3]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[4]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[5]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[6]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[7]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[8]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[9]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[10]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[11]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[14]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[15]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

[16]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[17]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[18]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[19]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[20]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (232)
  • HTML views (693)
  • Cited by (0)

Other articles
by authors

[Back to Top]