• Previous Article
    A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems
  • MCRF Home
  • This Issue
  • Next Article
    Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative
March  2020, 10(1): 157-169. doi: 10.3934/mcrf.2019034

Controllability properties of degenerate pseudo-parabolic boundary control problems

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

* Corresponding author: Tian-Yuan Xu

Received  September 2018 Revised  February 2019 Published  April 2019

Fund Project: The first author is supported by the China Postdoctoral Science Foundation grant 2018M630960, and the Excellent Young Scholar Program of South China Normal University grant 17KJ01. The second author is supported by the Joint Training PhD Program of China Scholarship Council grant 201806750016, and the Innovation Project of Graduate School of South China Normal University grant 2018LKXM005. The third author is supported by NSFC grant 11771156.

This paper concerns with the boundary control of a degenerate pseudo-parabolic equation. Compare to the results those for degenerate parabolic equations, we discover that the null controllability property for the degenerate pseudo-parabolic equation is false, but the approximate controllability in some proper state space holds.

Citation: Mu-Ming Zhang, Tian-Yuan Xu, Jing-Xue Yin. Controllability properties of degenerate pseudo-parabolic boundary control problems. Mathematical Control & Related Fields, 2020, 10 (1) : 157-169. doi: 10.3934/mcrf.2019034
References:
[1]

J. L. Bona and V. A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.  Google Scholar

[2]

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.  doi: 10.1016/0022-0396(77)90009-2.  Google Scholar

[3]

C. Cances, C. Choquet, Y. Fan and I. S. Pop, Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media, CASA Report, (2010), 10–75, Available from: https://pure.tue.nl/ws/files/3187782/695284.pdf. Google Scholar

[4]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.  doi: 10.1137/04062062X.  Google Scholar

[5]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.   Google Scholar

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, preprint, arXiv: 1801.01380. Google Scholar

[7]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Mathematical Control and Related Fields, 7 (2017), 171-211.  doi: 10.3934/mcrf.2017006.  Google Scholar

[8]

R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience, New York, 1953.  Google Scholar

[9]

C. M. Cuesta and J. Hulshof, A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves, Nonlinear Anal., 52 (2003), 1199-1218.  doi: 10.1016/S0362-546X(02)00160-8.  Google Scholar

[10]

A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, J. Comput. Appl. Math., 133 (2001), 65-83.  doi: 10.1016/S0377-0427(00)00635-X.  Google Scholar

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.  Google Scholar

[12]

A. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Ser. 34, Seoul National University, Korea, 1996.  Google Scholar

[13]

S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.  doi: 10.1051/cocv/2012013.  Google Scholar

[14]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.  Google Scholar

[15]

A. HasanO. M. Aamo and B. Foss, Boundary control for a class of pseudo-parabolic differential equations, Systems Control Lett., 62 (2013), 63-69.  doi: 10.1016/j.sysconle.2012.10.009.  Google Scholar

[16]

S. JiJ. Yin and Y. Cao, Instability of Positive Periodic Solutions for Semilinear Pseudo-Parabolic Equations with Logarithmic Nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[17]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Linear stochastic degenerate Sobolev equations and applications, Internat. J. Control, 88 (2015), 2538-2553.  doi: 10.1080/00207179.2015.1048482.  Google Scholar

[18]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-2064.  doi: 10.1137/110851808.  Google Scholar

[19]

Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, J. Funct. Anal., 260 (2011), 832-851.  doi: 10.1016/j.jfa.2010.10.018.  Google Scholar

[20]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Anal., 66 (2007), 2653-2675.  doi: 10.1016/j.na.2006.03.046.  Google Scholar

[21]

L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping, Int. J. Tomogr. Stat., 5 (2007), 79-84.   Google Scholar

[22]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[23]

Q. TaoH. Gao and Z. Yao, Null controllability of a pseudo-parabolic equation with moving control, J. Math. Anal. Appl., 418 (2014), 998-1005.  doi: 10.1016/j.jmaa.2014.04.038.  Google Scholar

[24]

C. J. Van DuijnY. FanL. A. Peletier and I. S. Pop, Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media, Nonlinear Anal. Real World Appl., 14 (2013), 1361-1383.  doi: 10.1016/j.nonrwa.2012.10.002.  Google Scholar

[25]

L. W. White, Control of a pseudo-parabolic initial value problem to a target function, SIAM J. Control Optim., 17 (1979), 587-595.  doi: 10.1137/0317041.  Google Scholar

[26]

L. W. White, Controllability properties of pseudoparabolic boundary control problems, SIAM J. Control Optim., 18 (1980), 534-539.  doi: 10.1137/0318039.  Google Scholar

[27]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, 4 (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1.  Google Scholar

[28]

X. Zhang and E. Zuazua, The linearized Benjamin-Bona-Mahony equation: A spectral approach to unique continuation. Semigroups of operators: theory and applications, Optimization Software, (2002), 368-379.   Google Scholar

[29]

X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin-Bona-Mahony equation with space-dependent potential, Math. Ann., 325 (2003), 543-582.  doi: 10.1007/s00208-002-0391-8.  Google Scholar

show all references

References:
[1]

J. L. Bona and V. A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.  Google Scholar

[2]

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.  doi: 10.1016/0022-0396(77)90009-2.  Google Scholar

[3]

C. Cances, C. Choquet, Y. Fan and I. S. Pop, Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media, CASA Report, (2010), 10–75, Available from: https://pure.tue.nl/ws/files/3187782/695284.pdf. Google Scholar

[4]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.  doi: 10.1137/04062062X.  Google Scholar

[5]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.   Google Scholar

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, preprint, arXiv: 1801.01380. Google Scholar

[7]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Mathematical Control and Related Fields, 7 (2017), 171-211.  doi: 10.3934/mcrf.2017006.  Google Scholar

[8]

R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience, New York, 1953.  Google Scholar

[9]

C. M. Cuesta and J. Hulshof, A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves, Nonlinear Anal., 52 (2003), 1199-1218.  doi: 10.1016/S0362-546X(02)00160-8.  Google Scholar

[10]

A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, J. Comput. Appl. Math., 133 (2001), 65-83.  doi: 10.1016/S0377-0427(00)00635-X.  Google Scholar

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.  Google Scholar

[12]

A. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Ser. 34, Seoul National University, Korea, 1996.  Google Scholar

[13]

S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.  doi: 10.1051/cocv/2012013.  Google Scholar

[14]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.  Google Scholar

[15]

A. HasanO. M. Aamo and B. Foss, Boundary control for a class of pseudo-parabolic differential equations, Systems Control Lett., 62 (2013), 63-69.  doi: 10.1016/j.sysconle.2012.10.009.  Google Scholar

[16]

S. JiJ. Yin and Y. Cao, Instability of Positive Periodic Solutions for Semilinear Pseudo-Parabolic Equations with Logarithmic Nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[17]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Linear stochastic degenerate Sobolev equations and applications, Internat. J. Control, 88 (2015), 2538-2553.  doi: 10.1080/00207179.2015.1048482.  Google Scholar

[18]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-2064.  doi: 10.1137/110851808.  Google Scholar

[19]

Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, J. Funct. Anal., 260 (2011), 832-851.  doi: 10.1016/j.jfa.2010.10.018.  Google Scholar

[20]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Anal., 66 (2007), 2653-2675.  doi: 10.1016/j.na.2006.03.046.  Google Scholar

[21]

L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping, Int. J. Tomogr. Stat., 5 (2007), 79-84.   Google Scholar

[22]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[23]

Q. TaoH. Gao and Z. Yao, Null controllability of a pseudo-parabolic equation with moving control, J. Math. Anal. Appl., 418 (2014), 998-1005.  doi: 10.1016/j.jmaa.2014.04.038.  Google Scholar

[24]

C. J. Van DuijnY. FanL. A. Peletier and I. S. Pop, Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media, Nonlinear Anal. Real World Appl., 14 (2013), 1361-1383.  doi: 10.1016/j.nonrwa.2012.10.002.  Google Scholar

[25]

L. W. White, Control of a pseudo-parabolic initial value problem to a target function, SIAM J. Control Optim., 17 (1979), 587-595.  doi: 10.1137/0317041.  Google Scholar

[26]

L. W. White, Controllability properties of pseudoparabolic boundary control problems, SIAM J. Control Optim., 18 (1980), 534-539.  doi: 10.1137/0318039.  Google Scholar

[27]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, 4 (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1.  Google Scholar

[28]

X. Zhang and E. Zuazua, The linearized Benjamin-Bona-Mahony equation: A spectral approach to unique continuation. Semigroups of operators: theory and applications, Optimization Software, (2002), 368-379.   Google Scholar

[29]

X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin-Bona-Mahony equation with space-dependent potential, Math. Ann., 325 (2003), 543-582.  doi: 10.1007/s00208-002-0391-8.  Google Scholar

[1]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[2]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[3]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[4]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[5]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[6]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[7]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[8]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[9]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[10]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[11]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[17]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[18]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[19]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (303)
  • HTML views (755)
  • Cited by (0)

Other articles
by authors

[Back to Top]