March  2020, 10(1): 171-187. doi: 10.3934/mcrf.2019035

A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

* Corresponding author: Mohammad Hadi Noori Skandari

Received  November 2017 Revised  February 2019 Published  March 2020 Early access  August 2019

In this paper, we present a new method based on the Clenshaw-Curtis formula to solve a class of fractional optimal control problems. First, we convert the fractional optimal control problem to an equivalent problem in the fractional calculus of variations. Then, by utilizing the Clenshaw-Curtis formula and the Chebyshev-Gauss-Lobatto points, we transform the problem to a discrete form. By this approach, we get a nonlinear programming problem by solving of which we can approximate the optimal solution of the main problem. We analyze the convergence of the obtained approximate solution and solve some numerical examples to show the efficiency of the method.

Citation: Mohammad Hadi Noori Skandari, Marzieh Habibli, Alireza Nazemi. A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems. Mathematical Control & Related Fields, 2020, 10 (1) : 171-187. doi: 10.3934/mcrf.2019035
References:
[1]

M. A. AboelelaM. F. Ahmed and H. T. Dorrah, Design of aerospace control systems using fractional PID controller, Journal of Advanced Research, 3 (2012), 225-232.   Google Scholar

[2]

A. Alizadeh and S. Effati, An iterative approach for solving fractional optimal control problems, Journal of Vibration and Control, 24 (2018), 18-36.  doi: 10.1177/1077546316633391.  Google Scholar

[3]

R. Almeida and D. F. M. Torres, A discrete method to solve fractional optimal control problems, Nonlinear Dynamics, 80 (2015), 1811-1816.  doi: 10.1007/s11071-014-1378-1.  Google Scholar

[4]

M. BeschiF. Padula and A. Visioli, The generalised isodamping approach for robust fractional PID controllers design, International Journal of Control, 90 (2017), 1157-1164.  doi: 10.1080/00207179.2015.1099076.  Google Scholar

[5]

A. H. BhrawyS. S. Ezz-EldienE. H. DohaM. A. Abdelkawy and D. Baleanu, Solving fractional optimal control problems within a Chebyshev Legendre operational technique, International Journal of Control, 90 (2017), 1230-1244.  doi: 10.1080/00207179.2016.1278267.  Google Scholar

[6]

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration Academic, New York-London, 1975.  Google Scholar

[7]

Y. DingZ. Wang and H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Transactions on Control Systems Technology, 20 (2012), 763-769.   Google Scholar

[8]

D. Feliu-Talegon and V. Feliu-Batlle, Improving the position control of a two degrees of freedom robotic sensing antenna using fractional-order controllers, International Journal of Control, 90 (2017), 1256-1281.  doi: 10.1080/00207179.2017.1281440.  Google Scholar

[9]

E. KeshavarzY. Ordokhani and M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials, Journal of Vibration and Control, 22 (2016), 3889-3903.  doi: 10.1177/1077546314567181.  Google Scholar

[10]

A. LotfiM. Dehghan and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computers and Mathematics with Applications, 62 (2011), 1055-1067.  doi: 10.1016/j.camwa.2011.03.044.  Google Scholar

[11]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[12]

C. I. MuresanA. DuttaE. H. DulfZ. PinarA. Maxim and C. M. Ionescu, Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control, 89 (2016), 579-593.  doi: 10.1080/00207179.2015.1086027.  Google Scholar

[13]

A. Nemati, Numerical solution of 2D fractional optimal control problems by the spectral method combined with Bernstein operational matrix, International Journal of Control, 91 (2018), 2642-2645.  doi: 10.1080/00207179.2017.1334267.  Google Scholar

[14]

M. H. Noori SkandariA. V. Kamyad and S. Effati, Smoothing approach for a class of nonsmooth optimal control problems, Applied Mathematical Modelling, 40 (2016), 886-903.  doi: 10.1016/j.apm.2015.05.014.  Google Scholar

[15] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, Academic Press, New York-London, 1974.   Google Scholar
[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[17]

S. Pooseh, R. Almeida and D. F. M. Torres, A numerical scheme to solve fractional optimal control problems, Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013), Article ID 165298, 10 pages. doi: 10.1155/2013/165298.  Google Scholar

[18]

K. RabieiY. Ordokhani and E. Babolian, The Boubaker polynomials and their application to solve fractional optimal control problems, Nonlinear Dynamics, 88 (2017), 1013-1026.  doi: 10.1007/s11071-016-3291-2.  Google Scholar

[19]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[20]

N. H. Sweilam, T. M. Al-Ajami and R. H. W. Hoppe, Numerical solution of some types of fractional optimal control problems, The Scientific World Journal, 2013 (2013), 306237. doi: 10.1155/2013/306237.  Google Scholar

[21]

L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719598.  Google Scholar

[22]

J. J. Trujillo and V. M. Ungureanu, Optimal control of discrete-time linear fractional-order systems with multiplicative noise, International Journal of Control, 91 (2018), 57-69.  doi: 10.1080/00207179.2016.1266520.  Google Scholar

show all references

References:
[1]

M. A. AboelelaM. F. Ahmed and H. T. Dorrah, Design of aerospace control systems using fractional PID controller, Journal of Advanced Research, 3 (2012), 225-232.   Google Scholar

[2]

A. Alizadeh and S. Effati, An iterative approach for solving fractional optimal control problems, Journal of Vibration and Control, 24 (2018), 18-36.  doi: 10.1177/1077546316633391.  Google Scholar

[3]

R. Almeida and D. F. M. Torres, A discrete method to solve fractional optimal control problems, Nonlinear Dynamics, 80 (2015), 1811-1816.  doi: 10.1007/s11071-014-1378-1.  Google Scholar

[4]

M. BeschiF. Padula and A. Visioli, The generalised isodamping approach for robust fractional PID controllers design, International Journal of Control, 90 (2017), 1157-1164.  doi: 10.1080/00207179.2015.1099076.  Google Scholar

[5]

A. H. BhrawyS. S. Ezz-EldienE. H. DohaM. A. Abdelkawy and D. Baleanu, Solving fractional optimal control problems within a Chebyshev Legendre operational technique, International Journal of Control, 90 (2017), 1230-1244.  doi: 10.1080/00207179.2016.1278267.  Google Scholar

[6]

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration Academic, New York-London, 1975.  Google Scholar

[7]

Y. DingZ. Wang and H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Transactions on Control Systems Technology, 20 (2012), 763-769.   Google Scholar

[8]

D. Feliu-Talegon and V. Feliu-Batlle, Improving the position control of a two degrees of freedom robotic sensing antenna using fractional-order controllers, International Journal of Control, 90 (2017), 1256-1281.  doi: 10.1080/00207179.2017.1281440.  Google Scholar

[9]

E. KeshavarzY. Ordokhani and M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials, Journal of Vibration and Control, 22 (2016), 3889-3903.  doi: 10.1177/1077546314567181.  Google Scholar

[10]

A. LotfiM. Dehghan and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computers and Mathematics with Applications, 62 (2011), 1055-1067.  doi: 10.1016/j.camwa.2011.03.044.  Google Scholar

[11]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[12]

C. I. MuresanA. DuttaE. H. DulfZ. PinarA. Maxim and C. M. Ionescu, Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control, 89 (2016), 579-593.  doi: 10.1080/00207179.2015.1086027.  Google Scholar

[13]

A. Nemati, Numerical solution of 2D fractional optimal control problems by the spectral method combined with Bernstein operational matrix, International Journal of Control, 91 (2018), 2642-2645.  doi: 10.1080/00207179.2017.1334267.  Google Scholar

[14]

M. H. Noori SkandariA. V. Kamyad and S. Effati, Smoothing approach for a class of nonsmooth optimal control problems, Applied Mathematical Modelling, 40 (2016), 886-903.  doi: 10.1016/j.apm.2015.05.014.  Google Scholar

[15] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, Academic Press, New York-London, 1974.   Google Scholar
[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[17]

S. Pooseh, R. Almeida and D. F. M. Torres, A numerical scheme to solve fractional optimal control problems, Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013), Article ID 165298, 10 pages. doi: 10.1155/2013/165298.  Google Scholar

[18]

K. RabieiY. Ordokhani and E. Babolian, The Boubaker polynomials and their application to solve fractional optimal control problems, Nonlinear Dynamics, 88 (2017), 1013-1026.  doi: 10.1007/s11071-016-3291-2.  Google Scholar

[19]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[20]

N. H. Sweilam, T. M. Al-Ajami and R. H. W. Hoppe, Numerical solution of some types of fractional optimal control problems, The Scientific World Journal, 2013 (2013), 306237. doi: 10.1155/2013/306237.  Google Scholar

[21]

L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719598.  Google Scholar

[22]

J. J. Trujillo and V. M. Ungureanu, Optimal control of discrete-time linear fractional-order systems with multiplicative noise, International Journal of Control, 91 (2018), 57-69.  doi: 10.1080/00207179.2016.1266520.  Google Scholar

Figure 1.  The exact and approximate optimal state for $ N = 4 $ in Example 6.1
Figure 2.  The exact and approximate optimal control for $ N = 4 $ in Example 6.1
Figure 3.  The absolute error of the approximate optimal state in Example 6.1
Figure 4.  The absolute error of the approximate optimal control in Example 6.1
Figure 5.  The exact and approximate optimal state for $ N = 6 $ in Example 6.2
Figure 6.  The exact and approximate optimal control for $ N = 6 $ in Example 6.2
Figure 7.  The absolute error of approximate optimal state in Example 6.2
Figure 8.  The absolute error of the approximate control in Example 6.2
Figure 9.  The exact and approximate optimal state for $ N = 6 $ in Example 6.3
Figure 10.  The exact and approximate optimal control for $ N = 6 $ in Example 6.3
Figure 11.  The absolute error of the approximate optimal state in Example 6.3
Figure 12.  The absolute error of the approximate optimal control in Example 6.3
Table 1.  The maximum absolute error for $ N = 4 $ in Example 6.1
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $6.077585\times 10^{-5}$ $2.236463 \times 10^{-5} $ $1.662597\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $2.031847\times 10^{-5} $ $6.593832 \times 10^{-5}$ $4.616561\times 10^{-4}$
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $6.077585\times 10^{-5}$ $2.236463 \times 10^{-5} $ $1.662597\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $2.031847\times 10^{-5} $ $6.593832 \times 10^{-5}$ $4.616561\times 10^{-4}$
Table 2.  The optimal value of the objective functional for $N = 4$ in Example 6.name-style="western"
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 7.986571 \times 10^{-10} $ $ 1.200881\times 10^{-8} $ $ 6.080480\times 10^{-7} $
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 7.986571 \times 10^{-10} $ $ 1.200881\times 10^{-8} $ $ 6.080480\times 10^{-7} $
Table 3.  The maximum absolute error for $ N = 6 $ in Example 6.2
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $1.128957\times 10^{-3}$ $2.967422 \times 10^{-4} $ $1.393032\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $1.508986\times 10^{-2} $ $5.269326 \times 10^{-3}$ $2.011737\times 10^{-3}$
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $1.128957\times 10^{-3}$ $2.967422 \times 10^{-4} $ $1.393032\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $1.508986\times 10^{-2} $ $5.269326 \times 10^{-3}$ $2.011737\times 10^{-3}$
Table 4.  The optimal value of the objective function for $N = 6$ in Example 6.2
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 4.699837 \times 10^{-6} $ $ 5.516687\times 10^{-7} $ $ 8.165173\times 10^{-8} $
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 4.699837 \times 10^{-6} $ $ 5.516687\times 10^{-7} $ $ 8.165173\times 10^{-8} $
Table 5.  The maximum absolute error for $ N = 6 $ in Example 6.3
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $2.475186\times 10^{-3}$ $3.593088 \times 10^{-4} $ $1.005558\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $5.873404\times 10^{-2} $ $5.118654 \times 10^{-3}$ $5.399343\times 10^{-3}$
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $2.475186\times 10^{-3}$ $3.593088 \times 10^{-4} $ $1.005558\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $5.873404\times 10^{-2} $ $5.118654 \times 10^{-3}$ $5.399343\times 10^{-3}$
Table 6.  The optimal value of the objective functional for $N = 6$ in Example 6.3
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 1.080409 \times 10^{-7} $ $ 2.074337\times 10^{-9} $ $ 4.013053\times 10^{-9} $
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 1.080409 \times 10^{-7} $ $ 2.074337\times 10^{-9} $ $ 4.013053\times 10^{-9} $
[1]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[2]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[3]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[4]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[5]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[6]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[7]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[8]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[9]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[10]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[11]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[12]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021007

[13]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[14]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[15]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[16]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[17]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[18]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[19]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[20]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (382)
  • HTML views (452)
  • Cited by (3)

[Back to Top]