March  2020, 10(1): 171-187. doi: 10.3934/mcrf.2019035

A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

* Corresponding author: Mohammad Hadi Noori Skandari

Received  November 2017 Revised  February 2019 Published  August 2019

In this paper, we present a new method based on the Clenshaw-Curtis formula to solve a class of fractional optimal control problems. First, we convert the fractional optimal control problem to an equivalent problem in the fractional calculus of variations. Then, by utilizing the Clenshaw-Curtis formula and the Chebyshev-Gauss-Lobatto points, we transform the problem to a discrete form. By this approach, we get a nonlinear programming problem by solving of which we can approximate the optimal solution of the main problem. We analyze the convergence of the obtained approximate solution and solve some numerical examples to show the efficiency of the method.

Citation: Mohammad Hadi Noori Skandari, Marzieh Habibli, Alireza Nazemi. A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems. Mathematical Control & Related Fields, 2020, 10 (1) : 171-187. doi: 10.3934/mcrf.2019035
References:
[1]

M. A. AboelelaM. F. Ahmed and H. T. Dorrah, Design of aerospace control systems using fractional PID controller, Journal of Advanced Research, 3 (2012), 225-232.   Google Scholar

[2]

A. Alizadeh and S. Effati, An iterative approach for solving fractional optimal control problems, Journal of Vibration and Control, 24 (2018), 18-36.  doi: 10.1177/1077546316633391.  Google Scholar

[3]

R. Almeida and D. F. M. Torres, A discrete method to solve fractional optimal control problems, Nonlinear Dynamics, 80 (2015), 1811-1816.  doi: 10.1007/s11071-014-1378-1.  Google Scholar

[4]

M. BeschiF. Padula and A. Visioli, The generalised isodamping approach for robust fractional PID controllers design, International Journal of Control, 90 (2017), 1157-1164.  doi: 10.1080/00207179.2015.1099076.  Google Scholar

[5]

A. H. BhrawyS. S. Ezz-EldienE. H. DohaM. A. Abdelkawy and D. Baleanu, Solving fractional optimal control problems within a Chebyshev Legendre operational technique, International Journal of Control, 90 (2017), 1230-1244.  doi: 10.1080/00207179.2016.1278267.  Google Scholar

[6]

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration Academic, New York-London, 1975.  Google Scholar

[7]

Y. DingZ. Wang and H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Transactions on Control Systems Technology, 20 (2012), 763-769.   Google Scholar

[8]

D. Feliu-Talegon and V. Feliu-Batlle, Improving the position control of a two degrees of freedom robotic sensing antenna using fractional-order controllers, International Journal of Control, 90 (2017), 1256-1281.  doi: 10.1080/00207179.2017.1281440.  Google Scholar

[9]

E. KeshavarzY. Ordokhani and M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials, Journal of Vibration and Control, 22 (2016), 3889-3903.  doi: 10.1177/1077546314567181.  Google Scholar

[10]

A. LotfiM. Dehghan and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computers and Mathematics with Applications, 62 (2011), 1055-1067.  doi: 10.1016/j.camwa.2011.03.044.  Google Scholar

[11]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[12]

C. I. MuresanA. DuttaE. H. DulfZ. PinarA. Maxim and C. M. Ionescu, Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control, 89 (2016), 579-593.  doi: 10.1080/00207179.2015.1086027.  Google Scholar

[13]

A. Nemati, Numerical solution of 2D fractional optimal control problems by the spectral method combined with Bernstein operational matrix, International Journal of Control, 91 (2018), 2642-2645.  doi: 10.1080/00207179.2017.1334267.  Google Scholar

[14]

M. H. Noori SkandariA. V. Kamyad and S. Effati, Smoothing approach for a class of nonsmooth optimal control problems, Applied Mathematical Modelling, 40 (2016), 886-903.  doi: 10.1016/j.apm.2015.05.014.  Google Scholar

[15] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, Academic Press, New York-London, 1974.   Google Scholar
[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[17]

S. Pooseh, R. Almeida and D. F. M. Torres, A numerical scheme to solve fractional optimal control problems, Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013), Article ID 165298, 10 pages. doi: 10.1155/2013/165298.  Google Scholar

[18]

K. RabieiY. Ordokhani and E. Babolian, The Boubaker polynomials and their application to solve fractional optimal control problems, Nonlinear Dynamics, 88 (2017), 1013-1026.  doi: 10.1007/s11071-016-3291-2.  Google Scholar

[19]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[20]

N. H. Sweilam, T. M. Al-Ajami and R. H. W. Hoppe, Numerical solution of some types of fractional optimal control problems, The Scientific World Journal, 2013 (2013), 306237. doi: 10.1155/2013/306237.  Google Scholar

[21]

L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719598.  Google Scholar

[22]

J. J. Trujillo and V. M. Ungureanu, Optimal control of discrete-time linear fractional-order systems with multiplicative noise, International Journal of Control, 91 (2018), 57-69.  doi: 10.1080/00207179.2016.1266520.  Google Scholar

show all references

References:
[1]

M. A. AboelelaM. F. Ahmed and H. T. Dorrah, Design of aerospace control systems using fractional PID controller, Journal of Advanced Research, 3 (2012), 225-232.   Google Scholar

[2]

A. Alizadeh and S. Effati, An iterative approach for solving fractional optimal control problems, Journal of Vibration and Control, 24 (2018), 18-36.  doi: 10.1177/1077546316633391.  Google Scholar

[3]

R. Almeida and D. F. M. Torres, A discrete method to solve fractional optimal control problems, Nonlinear Dynamics, 80 (2015), 1811-1816.  doi: 10.1007/s11071-014-1378-1.  Google Scholar

[4]

M. BeschiF. Padula and A. Visioli, The generalised isodamping approach for robust fractional PID controllers design, International Journal of Control, 90 (2017), 1157-1164.  doi: 10.1080/00207179.2015.1099076.  Google Scholar

[5]

A. H. BhrawyS. S. Ezz-EldienE. H. DohaM. A. Abdelkawy and D. Baleanu, Solving fractional optimal control problems within a Chebyshev Legendre operational technique, International Journal of Control, 90 (2017), 1230-1244.  doi: 10.1080/00207179.2016.1278267.  Google Scholar

[6]

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration Academic, New York-London, 1975.  Google Scholar

[7]

Y. DingZ. Wang and H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Transactions on Control Systems Technology, 20 (2012), 763-769.   Google Scholar

[8]

D. Feliu-Talegon and V. Feliu-Batlle, Improving the position control of a two degrees of freedom robotic sensing antenna using fractional-order controllers, International Journal of Control, 90 (2017), 1256-1281.  doi: 10.1080/00207179.2017.1281440.  Google Scholar

[9]

E. KeshavarzY. Ordokhani and M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials, Journal of Vibration and Control, 22 (2016), 3889-3903.  doi: 10.1177/1077546314567181.  Google Scholar

[10]

A. LotfiM. Dehghan and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computers and Mathematics with Applications, 62 (2011), 1055-1067.  doi: 10.1016/j.camwa.2011.03.044.  Google Scholar

[11]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[12]

C. I. MuresanA. DuttaE. H. DulfZ. PinarA. Maxim and C. M. Ionescu, Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control, 89 (2016), 579-593.  doi: 10.1080/00207179.2015.1086027.  Google Scholar

[13]

A. Nemati, Numerical solution of 2D fractional optimal control problems by the spectral method combined with Bernstein operational matrix, International Journal of Control, 91 (2018), 2642-2645.  doi: 10.1080/00207179.2017.1334267.  Google Scholar

[14]

M. H. Noori SkandariA. V. Kamyad and S. Effati, Smoothing approach for a class of nonsmooth optimal control problems, Applied Mathematical Modelling, 40 (2016), 886-903.  doi: 10.1016/j.apm.2015.05.014.  Google Scholar

[15] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, Academic Press, New York-London, 1974.   Google Scholar
[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[17]

S. Pooseh, R. Almeida and D. F. M. Torres, A numerical scheme to solve fractional optimal control problems, Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013), Article ID 165298, 10 pages. doi: 10.1155/2013/165298.  Google Scholar

[18]

K. RabieiY. Ordokhani and E. Babolian, The Boubaker polynomials and their application to solve fractional optimal control problems, Nonlinear Dynamics, 88 (2017), 1013-1026.  doi: 10.1007/s11071-016-3291-2.  Google Scholar

[19]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[20]

N. H. Sweilam, T. M. Al-Ajami and R. H. W. Hoppe, Numerical solution of some types of fractional optimal control problems, The Scientific World Journal, 2013 (2013), 306237. doi: 10.1155/2013/306237.  Google Scholar

[21]

L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719598.  Google Scholar

[22]

J. J. Trujillo and V. M. Ungureanu, Optimal control of discrete-time linear fractional-order systems with multiplicative noise, International Journal of Control, 91 (2018), 57-69.  doi: 10.1080/00207179.2016.1266520.  Google Scholar

Figure 1.  The exact and approximate optimal state for $ N = 4 $ in Example 6.1
Figure 2.  The exact and approximate optimal control for $ N = 4 $ in Example 6.1
Figure 3.  The absolute error of the approximate optimal state in Example 6.1
Figure 4.  The absolute error of the approximate optimal control in Example 6.1
Figure 5.  The exact and approximate optimal state for $ N = 6 $ in Example 6.2
Figure 6.  The exact and approximate optimal control for $ N = 6 $ in Example 6.2
Figure 7.  The absolute error of approximate optimal state in Example 6.2
Figure 8.  The absolute error of the approximate control in Example 6.2
Figure 9.  The exact and approximate optimal state for $ N = 6 $ in Example 6.3
Figure 10.  The exact and approximate optimal control for $ N = 6 $ in Example 6.3
Figure 11.  The absolute error of the approximate optimal state in Example 6.3
Figure 12.  The absolute error of the approximate optimal control in Example 6.3
Table 1.  The maximum absolute error for $ N = 4 $ in Example 6.1
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $6.077585\times 10^{-5}$ $2.236463 \times 10^{-5} $ $1.662597\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $2.031847\times 10^{-5} $ $6.593832 \times 10^{-5}$ $4.616561\times 10^{-4}$
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $6.077585\times 10^{-5}$ $2.236463 \times 10^{-5} $ $1.662597\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $2.031847\times 10^{-5} $ $6.593832 \times 10^{-5}$ $4.616561\times 10^{-4}$
Table 2.  The optimal value of the objective functional for $N = 4$ in Example 6.name-style="western"
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 7.986571 \times 10^{-10} $ $ 1.200881\times 10^{-8} $ $ 6.080480\times 10^{-7} $
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 7.986571 \times 10^{-10} $ $ 1.200881\times 10^{-8} $ $ 6.080480\times 10^{-7} $
Table 3.  The maximum absolute error for $ N = 6 $ in Example 6.2
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $1.128957\times 10^{-3}$ $2.967422 \times 10^{-4} $ $1.393032\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $1.508986\times 10^{-2} $ $5.269326 \times 10^{-3}$ $2.011737\times 10^{-3}$
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $1.128957\times 10^{-3}$ $2.967422 \times 10^{-4} $ $1.393032\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $1.508986\times 10^{-2} $ $5.269326 \times 10^{-3}$ $2.011737\times 10^{-3}$
Table 4.  The optimal value of the objective function for $N = 6$ in Example 6.2
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 4.699837 \times 10^{-6} $ $ 5.516687\times 10^{-7} $ $ 8.165173\times 10^{-8} $
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 4.699837 \times 10^{-6} $ $ 5.516687\times 10^{-7} $ $ 8.165173\times 10^{-8} $
Table 5.  The maximum absolute error for $ N = 6 $ in Example 6.3
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $2.475186\times 10^{-3}$ $3.593088 \times 10^{-4} $ $1.005558\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $5.873404\times 10^{-2} $ $5.118654 \times 10^{-3}$ $5.399343\times 10^{-3}$
$\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$
$\underset{t}{\mathrm{Max}}|E_x(t)|$ $2.475186\times 10^{-3}$ $3.593088 \times 10^{-4} $ $1.005558\times 10^{-3}$
$\underset{t}{\mathrm{Max}}|E_u(t)|$ $5.873404\times 10^{-2} $ $5.118654 \times 10^{-3}$ $5.399343\times 10^{-3}$
Table 6.  The optimal value of the objective functional for $N = 6$ in Example 6.3
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 1.080409 \times 10^{-7} $ $ 2.074337\times 10^{-9} $ $ 4.013053\times 10^{-9} $
$ \alpha = 0.5 $ $ \alpha = 0.6 $ $ \alpha = 0.7 $
$ J^* $ $ 1.080409 \times 10^{-7} $ $ 2.074337\times 10^{-9} $ $ 4.013053\times 10^{-9} $
[1]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[2]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[3]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[4]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[5]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[6]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[7]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[11]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[20]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (214)
  • HTML views (445)
  • Cited by (3)

[Back to Top]