doi: 10.3934/mcrf.2019037

Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries

1. 

Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France

2. 

Institut de Mathématiques de Toulouse & Institut Universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, 31062 Toulouse Cedex 9, France

* Corresponding author: Franck Boyer

Received  July 2018 Published  August 2019

The main goal of this paper is to investigate the controllability properties of semi-discrete in space coupled parabolic systems with less controls than equations, in dimension greater than $ 1 $. We are particularly interested in the boundary control case which is notably more intricate that the distributed control case, even though our analysis is more general.

The main assumption we make on the geometry and on the evolution equation itself is that it can be put into a tensorized form. In such a case, following [5] and using an adapted version of the Lebeau-Robbiano construction, we are able to prove controllability results for those semi-discrete systems (provided that the structure of the coupling terms satisfies some necessary Kalman condition) with uniform bounds on the controls.

To achieve this objective we actually propose an abstract result on ordinary differential equations with estimates on the control and the solution whose dependence upon the system parameters are carefully tracked. When applied to an ODE coming from the discretization in space of a parabolic system, we thus obtain uniform estimates with respect to the discretization parameters.

Citation: Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019037
References:
[1]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, Journal de Mathématiques Pures et Appliquées, 99 (2013), 544-576.  doi: 10.1016/j.matpur.2012.09.012.  Google Scholar

[2]

D. AllonsiusF. Boyer and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, 140 (2018), 857-911.  doi: 10.1007/s00211-018-0983-1.  Google Scholar

[3]

F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[4]

F. Ammar KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Math. Control Relat. Fields, 6 (2016), 185-216.  doi: 10.3934/mcrf.2016001.  Google Scholar

[5]

A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the n-dimensional boundary null controllability in cylindrical domains, SIAM Journal on Control and Optimization, 52 (2014), 2970–3001. doi: 10.1137/130929680.  Google Scholar

[6]

K. Bhandari and F. Boyer, Boundary null-controllability of coupled parabolic systems with Robin conditions, Submitted, (2019), https://hal.archives-ouvertes.fr/hal-02091091. Google Scholar

[7]

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d'Analyse Numérique, ESAIM Proc., EDP Sci., Les Ulis, 41 (2013), 15–58. doi: 10.1051/proc/201341002.  Google Scholar

[8]

F. BoyerF. Hubert and J. L. Rousseau, Discrete carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, Journal de Mathématiques Pures et Appliquées, 93 (2010), 240-276.  doi: 10.1016/j.matpur.2009.11.003.  Google Scholar

[9]

F. BoyerF. Hubert and J. L. Rousseau, Discrete carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM Journal on Control and Optimization, 48 (2010), 5357-5397.  doi: 10.1137/100784278.  Google Scholar

[10]

F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Annales de l'Institut Henri Poincaré Non Linear Analysis, 31 (2014), 1035-1078.  doi: 10.1016/j.anihpc.2013.07.011.  Google Scholar

[11]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.  Google Scholar

[12]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., 55 (2006), 597-609.  doi: 10.1016/j.sysconle.2006.01.004.  Google Scholar

[13]

S. Lang, Algebra, Springer New York, 2002. doi: 10.1007/978-1-4613-0041-0.  Google Scholar

[14]

J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations, ESAIM: COCV, 18 (2012), 712-747.  doi: 10.1051/cocv/2011168.  Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, (1995), 13 pp.  Google Scholar

[16]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485.  doi: 10.3934/dcdsb.2010.14.1465.  Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional analysis, 2nd edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.  Google Scholar

[18]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[19]

E. Zuazua, Control and numerical approximation of the wave and heat equations, International Congress of Mathematicians, Eur. Math. Soc., Zürich, 3 (2006), 1389–1417.  Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, Journal de Mathématiques Pures et Appliquées, 99 (2013), 544-576.  doi: 10.1016/j.matpur.2012.09.012.  Google Scholar

[2]

D. AllonsiusF. Boyer and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, 140 (2018), 857-911.  doi: 10.1007/s00211-018-0983-1.  Google Scholar

[3]

F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[4]

F. Ammar KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Math. Control Relat. Fields, 6 (2016), 185-216.  doi: 10.3934/mcrf.2016001.  Google Scholar

[5]

A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the n-dimensional boundary null controllability in cylindrical domains, SIAM Journal on Control and Optimization, 52 (2014), 2970–3001. doi: 10.1137/130929680.  Google Scholar

[6]

K. Bhandari and F. Boyer, Boundary null-controllability of coupled parabolic systems with Robin conditions, Submitted, (2019), https://hal.archives-ouvertes.fr/hal-02091091. Google Scholar

[7]

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d'Analyse Numérique, ESAIM Proc., EDP Sci., Les Ulis, 41 (2013), 15–58. doi: 10.1051/proc/201341002.  Google Scholar

[8]

F. BoyerF. Hubert and J. L. Rousseau, Discrete carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, Journal de Mathématiques Pures et Appliquées, 93 (2010), 240-276.  doi: 10.1016/j.matpur.2009.11.003.  Google Scholar

[9]

F. BoyerF. Hubert and J. L. Rousseau, Discrete carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM Journal on Control and Optimization, 48 (2010), 5357-5397.  doi: 10.1137/100784278.  Google Scholar

[10]

F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Annales de l'Institut Henri Poincaré Non Linear Analysis, 31 (2014), 1035-1078.  doi: 10.1016/j.anihpc.2013.07.011.  Google Scholar

[11]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.  Google Scholar

[12]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., 55 (2006), 597-609.  doi: 10.1016/j.sysconle.2006.01.004.  Google Scholar

[13]

S. Lang, Algebra, Springer New York, 2002. doi: 10.1007/978-1-4613-0041-0.  Google Scholar

[14]

J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations, ESAIM: COCV, 18 (2012), 712-747.  doi: 10.1051/cocv/2011168.  Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, (1995), 13 pp.  Google Scholar

[16]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485.  doi: 10.3934/dcdsb.2010.14.1465.  Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional analysis, 2nd edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.  Google Scholar

[18]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[19]

E. Zuazua, Control and numerical approximation of the wave and heat equations, International Congress of Mathematicians, Eur. Math. Soc., Zürich, 3 (2006), 1389–1417.  Google Scholar

Figure 1.  Typical geometric situation
Figure 2.  Grid geometry
Figure 3.  Component $ {\alpha} $ (left) and $ {\beta} $ (right) of system (4) with no control
Figure 4.  Component $ {\alpha} $ (left) and $ {\beta} $ (right) of system (4) with a boundary control
Figure 5.  Norms of the components $ {\alpha} $, $ {\beta} $ of system (4) with and without control
[1]

Luc Miller. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1465-1485. doi: 10.3934/dcdsb.2010.14.1465

[2]

T. Colin, Géraldine Ebrard, Gérard Gallice. Semi-discretization in time for nonlinear Zakharov waves equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 263-282. doi: 10.3934/dcdsb.2009.11.263

[3]

Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4295-4315. doi: 10.3934/dcdsb.2019120

[4]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[5]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[6]

Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809

[7]

Vinicius Albani, Adriano De Cezaro, Jorge P. Zubelli. On the choice of the Tikhonov regularization parameter and the discretization level: A discrepancy-based strategy. Inverse Problems & Imaging, 2016, 10 (1) : 1-25. doi: 10.3934/ipi.2016.10.1

[8]

Kokum R. De Silva, Tuoc V. Phan, Suzanne Lenhart. Advection control in parabolic PDE systems for competitive populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1049-1072. doi: 10.3934/dcdsb.2017052

[9]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[10]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[11]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[12]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[13]

Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219

[14]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[15]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[16]

Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems & Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87

[17]

Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-28. doi: 10.3934/dcdss.2020064

[18]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[19]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[20]

Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control & Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (15)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]