In this work we consider the exact controllability and the stabilization for the generalized Benney-Luke equation
$\begin{equation} u_{tt}-u_{xx}+a u_{xxxx}-bu_{xxtt}+ p u_t u_{x}^{p-1}u_{xx} + 2 u_x^{p}u_{xt} = f, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)\end{equation}$
on a periodic domain $ S $ (the unit circle on the plane) with internal control $ f $ supported on an arbitrary sub-domain of $ S $. We establish that the model is exactly controllable in a Sobolev type space when the whole $ S $ is the support of $ f $, without any assumption on the size of the initial and final states, and that the model is local exactly controllable when the support of $ f $ is a proper subdomain of $ S $, assuming that initial and terminal states are small. Moreover, in the case that the initial data is small and $ f $ is a special internal linear feedback, the solution of the model must have uniform exponential decay to a constant state.
Citation: |
[1] | J. Ben Amara and H. Bouzidi, Exact boundary controllability for the boussinesq equation with variable coefficient, Evol. Equ. Control Theory, 7 (2018), 403-415. doi: 10.3934/eect.2018020. |
[2] | D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), 309-313. doi: 10.1002/sapm1964431309. |
[3] | R. A. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic schrödinger equation, preprint, arXiv: 1807.05264. |
[4] | E. Cerpa and E. Crépeau, On the controllability of the improved Boussinesq equation, SIAM Journal on Control and Optimization, 56 (2018), 3035-3049. doi: 10.1137/16M108923X. |
[5] | E. Cerpa and I. Rivas, On the controllability of the Boussinesq equation in low regularity, Journal of Evolution Equations, 18 (2018), 1501-1519. doi: 10.1007/s00028-018-0450-6. |
[6] | M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries, Communications in Contemporary Mathematics, 11 (2009), 495-521. doi: 10.1142/S0219199709003454. |
[7] | E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain, Differential Integral Equations, 16 (2003), 303-326. |
[8] | C. Laurent, L. Rosier and B. Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Communications in Partial Differential Equations, 35 (2010), 707-744. doi: 10.1080/03605300903585336. |
[9] | C. Laurent, F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^2(\Bbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575. doi: 10.1007/s00205-015-0887-5. |
[10] | S. Li, M. Chen and B.-Y. Zhang, Exact controllability and stability of the sixth order boussinesq equation, preprint, arXiv: 1811.05943. |
[11] | F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Transactions of the American Mathematical Society, 367 (2015), 4595-4626. doi: 10.1090/S0002-9947-2015-06086-3. |
[12] | R. L. Pego and J. R. Quintero, Two-dimensional solitary waves for a Benney-Luke equation, Physica D, 132 (1999), 476-496. doi: 10.1016/S0167-2789(99)00058-5. |
[13] | L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESIAM: COCV, 2 (1997), 33-55. doi: 10.1051/cocv:1997102. |
[14] | D. Roumégoux, A sympletic non-squeezing theorem for BBM equation, Dynamics of PDE, 7 (2010), 289-305. doi: 10.4310/DPDE.2010.v7.n4.a1. |
[15] | D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095. |
[16] | D. Russell and B. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Control and Optim., 31 (1993), 659-676. doi: 10.1137/0331030. |
[17] | D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability for the Korteweg-de Vries equation, Trans. AMS., 348 (1996), 3643-3672. doi: 10.1090/S0002-9947-96-01672-8. |
[18] | T. Tao, Multilinear weighted convolution of $L^2$ functions and applications to nonlinear dispersive equations, Amer J. Math., 123 (2001), 839-908. doi: 10.1353/ajm.2001.0035. |
[19] | B. Y. Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their initial values, SIAM.I. Math. Anal., 26 (1995), 1488-1513. doi: 10.1137/S0036141093242600. |
[20] | B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, Int. Series of Numerical Mathematics, Birkhüser, Basel, 126 (1998), 297–310. |