June  2020, 10(2): 275-304. doi: 10.3934/mcrf.2019039

On the exact controllability and the stabilization for the Benney-Luke equation

1. 

Mathematics Department, Universidad del Valle, Cali, Valle del Cauca, Colombia

2. 

Mathematics Department, Universidad del Cauca, Popayán, Cauca, Colombia

* Corresponding author: José R. Quintero

Received  December 2018 Revised  May 2019 Published  August 2019

Fund Project: JRQ is supported by the Mathematics Department at Universidad del Valle and AMM is supported by the Mathematics Department at Universidad del Cauca

In this work we consider the exact controllability and the stabilization for the generalized Benney-Luke equation
$\begin{equation} u_{tt}-u_{xx}+a u_{xxxx}-bu_{xxtt}+ p u_t u_{x}^{p-1}u_{xx} + 2 u_x^{p}u_{xt} = f, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)\end{equation}$
on a periodic domain
$ S $
(the unit circle on the plane) with internal control
$ f $
supported on an arbitrary sub-domain of
$ S $
. We establish that the model is exactly controllable in a Sobolev type space when the whole
$ S $
is the support of
$ f $
, without any assumption on the size of the initial and final states, and that the model is local exactly controllable when the support of
$ f $
is a proper subdomain of
$ S $
, assuming that initial and terminal states are small. Moreover, in the case that the initial data is small and
$ f $
is a special internal linear feedback, the solution of the model must have uniform exponential decay to a constant state.
Citation: José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control & Related Fields, 2020, 10 (2) : 275-304. doi: 10.3934/mcrf.2019039
References:
[1]

J. Ben Amara and H. Bouzidi, Exact boundary controllability for the boussinesq equation with variable coefficient, Evol. Equ. Control Theory, 7 (2018), 403-415.  doi: 10.3934/eect.2018020.  Google Scholar

[2]

D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), 309-313.  doi: 10.1002/sapm1964431309.  Google Scholar

[3]

R. A. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic schrödinger equation, preprint, arXiv: 1807.05264. Google Scholar

[4]

E. Cerpa and E. Crépeau, On the controllability of the improved Boussinesq equation, SIAM Journal on Control and Optimization, 56 (2018), 3035-3049.  doi: 10.1137/16M108923X.  Google Scholar

[5]

E. Cerpa and I. Rivas, On the controllability of the Boussinesq equation in low regularity, Journal of Evolution Equations, 18 (2018), 1501-1519.  doi: 10.1007/s00028-018-0450-6.  Google Scholar

[6]

M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries, Communications in Contemporary Mathematics, 11 (2009), 495-521.  doi: 10.1142/S0219199709003454.  Google Scholar

[7]

E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain, Differential Integral Equations, 16 (2003), 303-326.   Google Scholar

[8]

C. LaurentL. Rosier and B. Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Communications in Partial Differential Equations, 35 (2010), 707-744.  doi: 10.1080/03605300903585336.  Google Scholar

[9]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^2(\Bbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.  Google Scholar

[10]

S. Li, M. Chen and B.-Y. Zhang, Exact controllability and stability of the sixth order boussinesq equation, preprint, arXiv: 1811.05943. Google Scholar

[11]

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Transactions of the American Mathematical Society, 367 (2015), 4595-4626.  doi: 10.1090/S0002-9947-2015-06086-3.  Google Scholar

[12]

R. L. Pego and J. R. Quintero, Two-dimensional solitary waves for a Benney-Luke equation, Physica D, 132 (1999), 476-496.  doi: 10.1016/S0167-2789(99)00058-5.  Google Scholar

[13]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESIAM: COCV, 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[14]

D. Roumégoux, A sympletic non-squeezing theorem for BBM equation, Dynamics of PDE, 7 (2010), 289-305.  doi: 10.4310/DPDE.2010.v7.n4.a1.  Google Scholar

[15]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[16]

D. Russell and B. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Control and Optim., 31 (1993), 659-676.  doi: 10.1137/0331030.  Google Scholar

[17]

D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability for the Korteweg-de Vries equation, Trans. AMS., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.  Google Scholar

[18]

T. Tao, Multilinear weighted convolution of $L^2$ functions and applications to nonlinear dispersive equations, Amer J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[19]

B. Y. Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their initial values, SIAM.I. Math. Anal., 26 (1995), 1488-1513.  doi: 10.1137/S0036141093242600.  Google Scholar

[20]

B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, Int. Series of Numerical Mathematics, Birkhüser, Basel, 126 (1998), 297–310.  Google Scholar

show all references

References:
[1]

J. Ben Amara and H. Bouzidi, Exact boundary controllability for the boussinesq equation with variable coefficient, Evol. Equ. Control Theory, 7 (2018), 403-415.  doi: 10.3934/eect.2018020.  Google Scholar

[2]

D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), 309-313.  doi: 10.1002/sapm1964431309.  Google Scholar

[3]

R. A. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic schrödinger equation, preprint, arXiv: 1807.05264. Google Scholar

[4]

E. Cerpa and E. Crépeau, On the controllability of the improved Boussinesq equation, SIAM Journal on Control and Optimization, 56 (2018), 3035-3049.  doi: 10.1137/16M108923X.  Google Scholar

[5]

E. Cerpa and I. Rivas, On the controllability of the Boussinesq equation in low regularity, Journal of Evolution Equations, 18 (2018), 1501-1519.  doi: 10.1007/s00028-018-0450-6.  Google Scholar

[6]

M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries, Communications in Contemporary Mathematics, 11 (2009), 495-521.  doi: 10.1142/S0219199709003454.  Google Scholar

[7]

E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain, Differential Integral Equations, 16 (2003), 303-326.   Google Scholar

[8]

C. LaurentL. Rosier and B. Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Communications in Partial Differential Equations, 35 (2010), 707-744.  doi: 10.1080/03605300903585336.  Google Scholar

[9]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^2(\Bbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.  Google Scholar

[10]

S. Li, M. Chen and B.-Y. Zhang, Exact controllability and stability of the sixth order boussinesq equation, preprint, arXiv: 1811.05943. Google Scholar

[11]

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Transactions of the American Mathematical Society, 367 (2015), 4595-4626.  doi: 10.1090/S0002-9947-2015-06086-3.  Google Scholar

[12]

R. L. Pego and J. R. Quintero, Two-dimensional solitary waves for a Benney-Luke equation, Physica D, 132 (1999), 476-496.  doi: 10.1016/S0167-2789(99)00058-5.  Google Scholar

[13]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESIAM: COCV, 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[14]

D. Roumégoux, A sympletic non-squeezing theorem for BBM equation, Dynamics of PDE, 7 (2010), 289-305.  doi: 10.4310/DPDE.2010.v7.n4.a1.  Google Scholar

[15]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[16]

D. Russell and B. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Control and Optim., 31 (1993), 659-676.  doi: 10.1137/0331030.  Google Scholar

[17]

D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability for the Korteweg-de Vries equation, Trans. AMS., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.  Google Scholar

[18]

T. Tao, Multilinear weighted convolution of $L^2$ functions and applications to nonlinear dispersive equations, Amer J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[19]

B. Y. Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their initial values, SIAM.I. Math. Anal., 26 (1995), 1488-1513.  doi: 10.1137/S0036141093242600.  Google Scholar

[20]

B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, Int. Series of Numerical Mathematics, Birkhüser, Basel, 126 (1998), 297–310.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[4]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (152)
  • HTML views (581)
  • Cited by (0)

Other articles
by authors

[Back to Top]