[1]
|
B. Ainseba, S. Aniţa and M. Langlais, Optimal control for a nonlinear age-structured population dynamics model, Electron. J. Diff. Eqs., 28 (2003), 1-9.
|
[2]
|
S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Acad. Publ., Dordrecht, 2000.
doi: 10.1007/978-94-015-9436-3.
|
[3]
|
L.-I. Aniţa, S. Aniţa and V. Arnǎutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.
doi: 10.1016/j.amc.2009.09.010.
|
[4]
|
S. Aniţa, V. Arnǎutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, Basel, 2011.
doi: 10.1007/978-0-8176-8098-5.
|
[5]
|
S. Aniţa, V. Capasso and A.-M. Moşneagu, Regional control in optimal harvesting problems of population dynamics, Nonlin. Anal., 147 (2016), 191-212.
doi: 10.1016/j.na.2016.09.008.
|
[6]
|
V. Arnǎutu and P. Neittaanmäki, Optimal Control from Theory to Computer Programs, Kluwer Acad. Publ., Dordrecht, 2003.
doi: 10.1007/978-94-017-2488-3.
|
[7]
|
A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phen., 9 (2014), 20-37.
doi: 10.1051/mmnp/20149403.
|
[8]
|
A. O. Belyakov and V. M. Veliov, On optimal harvesting in age-structured populations, in Dynamic Perspectives on Managerial Decision Making (H. Dawid, K.F. Doerner, G. Feichtinger, P.M. Kort, A. Seidl, Eds.), Springer Internat. Publ., 22 (2016), 149-166.
doi: 10.1007/978-3-319-39120-5_9.
|
[9]
|
A. Bressan, G. M. Coclite and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), 1186-1202.
doi: 10.1137/110853510.
|
[10]
|
M. Brokate, Pontyagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.
doi: 10.1007/BF00276559.
|
[11]
|
M. Brokate, On a certain optimal harvesting problem with continuous age structure, in: Optimal Control of Partial Differential Equations II (K.-H. Hoffmann, W. Krabs, Eds.), Birkhäuser, Boston, 78 (1987), 29-42.
|
[12]
|
G. M. Coclite and M. Garavello, A time dependent optimal harvesting problem with measure valued solutions, SIAM J. Control Optim., 55 (2017), 913-935.
doi: 10.1137/16M1061886.
|
[13]
|
G. M. Coclite, M. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.
doi: 10.3934/dcdss.2018053.
|
[14]
|
G. Feichtinger, G. Tragler and V. M. Veliov, Optimality conditions for age-structured control systems, J. Math. Anal. Appl., 288 (2003), 47-68.
doi: 10.1016/j.jmaa.2003.07.001.
|
[15]
|
K. R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1-15.
doi: 10.1007/s00245-005-0847-9.
|
[16]
|
M. E. Gurtin and L. F. Murphy, On the optimal harvesting of age-structured populations: some simple models, Math. Biosci., 55 (1981), 115-136.
doi: 10.1016/0025-5564(81)90015-8.
|
[17]
|
M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981), 131-148.
doi: 10.1007/BF00275209.
|
[18]
|
Z. R. He, Optimal harvesting of two competing species with age dependence, Nonlin. Anal. Real World Appl., 7 (2006), 769-788.
doi: 10.1016/j.nonrwa.2005.04.005.
|
[19]
|
N. Hegoburu, P. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750, https://hal.archives-ouvertes.fr/hal-01395712.
doi: 10.1137/16M1103087.
|
[20]
|
N. Hritonenko and Y. Yatsenko, Optimization of harvesting age in integral age-dependent model of population dynamics, Math. Biosci., 195 (2005), 154-167.
doi: 10.1016/j.mbs.2005.03.001.
|
[21]
|
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs - C.N.R., Giardini Editori e Stampatori, Pisa, 1995.
|
[22]
|
S. Lenhart, Using optimal control of parabolic PDEs to investigate population questions, NIMBioS, April 9-11, 2014, https://www.fields.utoronto.ca/programs/scientific/13-14/BIOMAT/presentations/lenhartToronto3.pdf.
|
[23]
|
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007.
|
[24]
|
Z. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl. Math. Comput., 186 (2007), 1742-1752.
doi: 10.1016/j.amc.2006.08.168.
|
[25]
|
Z. Luo, W. T. Li and M. Wang, Optimal harvesting control problem for linear periodic age-dependent population dynamics, Appl. Math. Comput., 151 (2004), 789-800.
doi: 10.1016/S0096-3003(03)00536-8.
|
[26]
|
L. F. Murphy and S. J. Smith, Optimal harvesting of an age-structured population, J. Math. Biol., 29 (1990), 77-90.
doi: 10.1007/BF00173910.
|
[27]
|
G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
|
[28]
|
C. Zhao, M. Wang and P. Zhao, Optimal harvesting problems for age-dependent interacting species with diffusion, Appl. Math. Comput., 163 (2005), 117-129.
doi: 10.1016/j.amc.2004.01.030.
|
[29]
|
C. Zhao, P. Zhao and M. Wang, Optimal harvesting for nonlinear age-dependent population dynamics, Math. Comput. Model., 43 (2006), 310-319.
doi: 10.1016/j.mcm.2005.06.008.
|