December  2019, 9(4): 607-621. doi: 10.3934/mcrf.2019043

Optimal harvesting for age-structured population dynamics with size-dependent control

1. 

Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iaşi, "Octav Mayer" Institute of Mathematics of the Romanian Academy, Iaşi 700506, Romania

2. 

Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iaşi, Iaşi 700506, Romania

* Corresponding author: Sebastian Aniţta

Received  May 2018 Revised  August 2019 Published  November 2019

We investigate two optimal harvesting problems related to age-dependent population dynamics; namely we consider two problems of maximizing the profit for age-structured population dynamics with respect to a size-dependent harvesting effort. We evaluate the directional derivatives for the cost functionals. The structure of the harvesting effort is uniquely determined by its intensity (magnitude) and by its area of action/distribution. We derive an iterative algorithm to increase at each iteration the profit by changing the intensity of the harvesting effort and its distribution area. Some numerical tests are given to illustrate the effectiveness of the theoretical results for the first optimal harvesting problem.

Citation: Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control & Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043
References:
[1]

B. AinsebaS. Aniţa and M. Langlais, Optimal control for a nonlinear age-structured population dynamics model, Electron. J. Diff. Eqs., 28 (2003), 1-9.   Google Scholar

[2]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Acad. Publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.  Google Scholar

[3]

L.-I. AniţaS. Aniţa and V. Arnǎutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.  doi: 10.1016/j.amc.2009.09.010.  Google Scholar

[4]

S. Aniţa, V. Arnǎutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, Basel, 2011. doi: 10.1007/978-0-8176-8098-5.  Google Scholar

[5]

S. AniţaV. Capasso and A.-M. Moşneagu, Regional control in optimal harvesting problems of population dynamics, Nonlin. Anal., 147 (2016), 191-212.  doi: 10.1016/j.na.2016.09.008.  Google Scholar

[6]

V. Arnǎutu and P. Neittaanmäki, Optimal Control from Theory to Computer Programs, Kluwer Acad. Publ., Dordrecht, 2003. doi: 10.1007/978-94-017-2488-3.  Google Scholar

[7]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phen., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.  Google Scholar

[8]

A. O. Belyakov and V. M. Veliov, On optimal harvesting in age-structured populations, in Dynamic Perspectives on Managerial Decision Making (H. Dawid, K.F. Doerner, G. Feichtinger, P.M. Kort, A. Seidl, Eds.), Springer Internat. Publ., 22 (2016), 149-166. doi: 10.1007/978-3-319-39120-5_9.  Google Scholar

[9]

A. BressanG. M. Coclite and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), 1186-1202.  doi: 10.1137/110853510.  Google Scholar

[10]

M. Brokate, Pontyagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.  doi: 10.1007/BF00276559.  Google Scholar

[11]

M. Brokate, On a certain optimal harvesting problem with continuous age structure, in: Optimal Control of Partial Differential Equations II (K.-H. Hoffmann, W. Krabs, Eds.), Birkhäuser, Boston, 78 (1987), 29-42.  Google Scholar

[12]

G. M. Coclite and M. Garavello, A time dependent optimal harvesting problem with measure valued solutions, SIAM J. Control Optim., 55 (2017), 913-935.  doi: 10.1137/16M1061886.  Google Scholar

[13]

G. M. CocliteM. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.  doi: 10.3934/dcdss.2018053.  Google Scholar

[14]

G. FeichtingerG. Tragler and V. M. Veliov, Optimality conditions for age-structured control systems, J. Math. Anal. Appl., 288 (2003), 47-68.  doi: 10.1016/j.jmaa.2003.07.001.  Google Scholar

[15]

K. R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1-15.  doi: 10.1007/s00245-005-0847-9.  Google Scholar

[16]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of age-structured populations: some simple models, Math. Biosci., 55 (1981), 115-136.  doi: 10.1016/0025-5564(81)90015-8.  Google Scholar

[17]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981), 131-148.  doi: 10.1007/BF00275209.  Google Scholar

[18]

Z. R. He, Optimal harvesting of two competing species with age dependence, Nonlin. Anal. Real World Appl., 7 (2006), 769-788.  doi: 10.1016/j.nonrwa.2005.04.005.  Google Scholar

[19]

N. Hegoburu, P. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750, https://hal.archives-ouvertes.fr/hal-01395712. doi: 10.1137/16M1103087.  Google Scholar

[20]

N. Hritonenko and Y. Yatsenko, Optimization of harvesting age in integral age-dependent model of population dynamics, Math. Biosci., 195 (2005), 154-167.  doi: 10.1016/j.mbs.2005.03.001.  Google Scholar

[21]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs - C.N.R., Giardini Editori e Stampatori, Pisa, 1995. Google Scholar

[22]

S. Lenhart, Using optimal control of parabolic PDEs to investigate population questions, NIMBioS, April 9-11, 2014, https://www.fields.utoronto.ca/programs/scientific/13-14/BIOMAT/presentations/lenhartToronto3.pdf. Google Scholar

[23]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007.  Google Scholar

[24]

Z. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl. Math. Comput., 186 (2007), 1742-1752.  doi: 10.1016/j.amc.2006.08.168.  Google Scholar

[25]

Z. LuoW. T. Li and M. Wang, Optimal harvesting control problem for linear periodic age-dependent population dynamics, Appl. Math. Comput., 151 (2004), 789-800.  doi: 10.1016/S0096-3003(03)00536-8.  Google Scholar

[26]

L. F. Murphy and S. J. Smith, Optimal harvesting of an age-structured population, J. Math. Biol., 29 (1990), 77-90.  doi: 10.1007/BF00173910.  Google Scholar

[27]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.  Google Scholar

[28]

C. ZhaoM. Wang and P. Zhao, Optimal harvesting problems for age-dependent interacting species with diffusion, Appl. Math. Comput., 163 (2005), 117-129.  doi: 10.1016/j.amc.2004.01.030.  Google Scholar

[29]

C. ZhaoP. Zhao and M. Wang, Optimal harvesting for nonlinear age-dependent population dynamics, Math. Comput. Model., 43 (2006), 310-319.  doi: 10.1016/j.mcm.2005.06.008.  Google Scholar

show all references

References:
[1]

B. AinsebaS. Aniţa and M. Langlais, Optimal control for a nonlinear age-structured population dynamics model, Electron. J. Diff. Eqs., 28 (2003), 1-9.   Google Scholar

[2]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Acad. Publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.  Google Scholar

[3]

L.-I. AniţaS. Aniţa and V. Arnǎutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.  doi: 10.1016/j.amc.2009.09.010.  Google Scholar

[4]

S. Aniţa, V. Arnǎutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, Basel, 2011. doi: 10.1007/978-0-8176-8098-5.  Google Scholar

[5]

S. AniţaV. Capasso and A.-M. Moşneagu, Regional control in optimal harvesting problems of population dynamics, Nonlin. Anal., 147 (2016), 191-212.  doi: 10.1016/j.na.2016.09.008.  Google Scholar

[6]

V. Arnǎutu and P. Neittaanmäki, Optimal Control from Theory to Computer Programs, Kluwer Acad. Publ., Dordrecht, 2003. doi: 10.1007/978-94-017-2488-3.  Google Scholar

[7]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phen., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.  Google Scholar

[8]

A. O. Belyakov and V. M. Veliov, On optimal harvesting in age-structured populations, in Dynamic Perspectives on Managerial Decision Making (H. Dawid, K.F. Doerner, G. Feichtinger, P.M. Kort, A. Seidl, Eds.), Springer Internat. Publ., 22 (2016), 149-166. doi: 10.1007/978-3-319-39120-5_9.  Google Scholar

[9]

A. BressanG. M. Coclite and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), 1186-1202.  doi: 10.1137/110853510.  Google Scholar

[10]

M. Brokate, Pontyagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.  doi: 10.1007/BF00276559.  Google Scholar

[11]

M. Brokate, On a certain optimal harvesting problem with continuous age structure, in: Optimal Control of Partial Differential Equations II (K.-H. Hoffmann, W. Krabs, Eds.), Birkhäuser, Boston, 78 (1987), 29-42.  Google Scholar

[12]

G. M. Coclite and M. Garavello, A time dependent optimal harvesting problem with measure valued solutions, SIAM J. Control Optim., 55 (2017), 913-935.  doi: 10.1137/16M1061886.  Google Scholar

[13]

G. M. CocliteM. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.  doi: 10.3934/dcdss.2018053.  Google Scholar

[14]

G. FeichtingerG. Tragler and V. M. Veliov, Optimality conditions for age-structured control systems, J. Math. Anal. Appl., 288 (2003), 47-68.  doi: 10.1016/j.jmaa.2003.07.001.  Google Scholar

[15]

K. R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1-15.  doi: 10.1007/s00245-005-0847-9.  Google Scholar

[16]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of age-structured populations: some simple models, Math. Biosci., 55 (1981), 115-136.  doi: 10.1016/0025-5564(81)90015-8.  Google Scholar

[17]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981), 131-148.  doi: 10.1007/BF00275209.  Google Scholar

[18]

Z. R. He, Optimal harvesting of two competing species with age dependence, Nonlin. Anal. Real World Appl., 7 (2006), 769-788.  doi: 10.1016/j.nonrwa.2005.04.005.  Google Scholar

[19]

N. Hegoburu, P. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750, https://hal.archives-ouvertes.fr/hal-01395712. doi: 10.1137/16M1103087.  Google Scholar

[20]

N. Hritonenko and Y. Yatsenko, Optimization of harvesting age in integral age-dependent model of population dynamics, Math. Biosci., 195 (2005), 154-167.  doi: 10.1016/j.mbs.2005.03.001.  Google Scholar

[21]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs - C.N.R., Giardini Editori e Stampatori, Pisa, 1995. Google Scholar

[22]

S. Lenhart, Using optimal control of parabolic PDEs to investigate population questions, NIMBioS, April 9-11, 2014, https://www.fields.utoronto.ca/programs/scientific/13-14/BIOMAT/presentations/lenhartToronto3.pdf. Google Scholar

[23]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007.  Google Scholar

[24]

Z. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl. Math. Comput., 186 (2007), 1742-1752.  doi: 10.1016/j.amc.2006.08.168.  Google Scholar

[25]

Z. LuoW. T. Li and M. Wang, Optimal harvesting control problem for linear periodic age-dependent population dynamics, Appl. Math. Comput., 151 (2004), 789-800.  doi: 10.1016/S0096-3003(03)00536-8.  Google Scholar

[26]

L. F. Murphy and S. J. Smith, Optimal harvesting of an age-structured population, J. Math. Biol., 29 (1990), 77-90.  doi: 10.1007/BF00173910.  Google Scholar

[27]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.  Google Scholar

[28]

C. ZhaoM. Wang and P. Zhao, Optimal harvesting problems for age-dependent interacting species with diffusion, Appl. Math. Comput., 163 (2005), 117-129.  doi: 10.1016/j.amc.2004.01.030.  Google Scholar

[29]

C. ZhaoP. Zhao and M. Wang, Optimal harvesting for nonlinear age-dependent population dynamics, Math. Comput. Model., 43 (2006), 310-319.  doi: 10.1016/j.mcm.2005.06.008.  Google Scholar

Figure 1.  The size of an individual as a function of age $ a $
Figure 2.  $ \alpha $ as a function of time t. The hashed region is the area where the control acts
Figure 3.  The fertility and mortality rates
Figure 4.  The representation of $ J $ as a function of iteration
Figure 5.  The harvesting effort for Test 1
Figure 6.  The harvesting effort for Test 2
Table 1.  The value of $ J $ at each iteration
iteration J
1 0.464525126289841
2 0.533792098410522
3 0.545212800519842
4 0.552867826650825
5 0.556828710910306
6 0.558793583997659
7 0.559787107591890
8 0.560285396165302
9 0.560534749191512
10 0.560659455111737
11 0.560721812501533
12 0.560752991933830
13 0.560768581787776
14 0.560776376743360
iteration J
1 0.464525126289841
2 0.533792098410522
3 0.545212800519842
4 0.552867826650825
5 0.556828710910306
6 0.558793583997659
7 0.559787107591890
8 0.560285396165302
9 0.560534749191512
10 0.560659455111737
11 0.560721812501533
12 0.560752991933830
13 0.560768581787776
14 0.560776376743360
[1]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[2]

Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545

[3]

Peng Zhong, Suzanne Lenhart. Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations. Evolution Equations & Control Theory, 2013, 2 (4) : 749-769. doi: 10.3934/eect.2013.2.749

[4]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[5]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[6]

Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107

[7]

Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153

[8]

Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2281-2298. doi: 10.3934/dcdsb.2012.17.2281

[9]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[10]

Meng Liu, Chuanzhi Bai. Optimal harvesting of a stochastic delay competitive model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1493-1508. doi: 10.3934/dcdsb.2017071

[11]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[12]

Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841

[13]

Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an age-structured model with relapse. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019226

[14]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[15]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[16]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[17]

Dongmei Xiao. Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 699-719. doi: 10.3934/dcdsb.2016.21.699

[18]

Rong Liu, Feng-Qin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3603-3618. doi: 10.3934/dcdsb.2016112

[19]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[20]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (29)
  • HTML views (29)
  • Cited by (0)

Other articles
by authors

[Back to Top]