December  2019, 9(4): 623-642. doi: 10.3934/mcrf.2019044

Local sensitivity via the complex-step derivative approximation for 1D Poro-Elastic and Poro-Visco-Elastic models

1. 

Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8212, USA

2. 

Department of Electrical Engineering and Computer Science, Department of Mathematics, University of Missouri, Columbia, MO, 65211, USA

* Corresponding author: H. Thomas Banks

Received  November 2017 Revised  April 2018 Published  November 2019

Poro-elastic systems have been used extensively in modeling fluid flow in porous media in petroleum and earthquake engineering. Nowadays, they are frequently used to model fluid flow through biological tissues, cartilages, and bones. In these biological applications, the fluid-solid mixture problems, which may also incorporate structural viscosity, are considered on bounded domains with appropriate non-homogeneous boundary conditions. The recent work in [12] provided a theoretical and numerical analysis of nonlinear poro-elastic and poro-viscoelastic models on bounded domains with mixed boundary conditions, focusing on the role of visco-elasticity in the material. Their results show that higher time regularity of the sources is needed to guarantee bounded solution when visco-elasticity is not present. Inspired by their results, we have recently performed local sensitivity analysis on the solutions of these fluid-solid mixture problems with respect to the boundary source of traction associated with the elastic structure [3]. Our results show that the solution is more sensitive to boundary datum in the purely elastic case than when visco-elasticity is present in the solid matrix. In this article, we further extend this work in order to include local sensitivities of the solution of the coupled system to the boundary conditions imposed on the Darcy velocity. Sensitivity analysis is the first step in identifying important parameters to control or use as control terms in these poro-elastic and poro-visco-elastic models, which is our ultimate goal.

Citation: H. Thomas Banks, Kidist Bekele-Maxwell, Lorena Bociu, Marcella Noorman, Giovanna Guidoboni. Local sensitivity via the complex-step derivative approximation for 1D Poro-Elastic and Poro-Visco-Elastic models. Mathematical Control & Related Fields, 2019, 9 (4) : 623-642. doi: 10.3934/mcrf.2019044
References:
[1]

W. Kyle Anderson and E. J. Nielsen, Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables, AIAA Journal, 39 (2001). Google Scholar

[2]

W. Kyle Anderson, E. J. Nielsen and D. L. Whitfield, Multidisciplinary Sensitivity Derivatives Using Complex Variables, Technical report, Engineering Research Center Report, Missisipi State University, mSSU-COE-ERC-98-08, July, 1998. Google Scholar

[3]

H. T. BanksK. Bekele-MaxwellL. BociuM. Noorman and G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models, Quart. Appl. Math., 75 (2017), 697-735.  doi: 10.1090/qam/1475.  Google Scholar

[4]

H. T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and G. Guidoboni, Sensitivity Analysis in Poro-Elastic and Poro-Visco-Elastic Models, CRSC-TR17-01, Center for Research in Scientific Computation, N. C. State University, Raleigh, NC, February 2017. Google Scholar

[5]

H. T. BanksK. Bekele-MaxwellL. BociuM. Noorman and K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology, Eurasian Journal of Mathematical and Computer Applications, 3 (2015), 15-68.   Google Scholar

[6]

H. T. BanksK. Bekele-MaxwellL. Bociu and C. Wang, Sensitivity via the complex-step method for delay differential equations with non-smooth initial data, Quart. Appl. Math., 75 (2017), 231-248.  doi: 10.1090/qam/1458.  Google Scholar

[7]

H. T. BanksS. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problem, J. Inverse and Ill-Posed Problems, 15 (2007), 683-708.  doi: 10.1515/jiip.2007.038.  Google Scholar

[8] H. T. BanksS. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, Chapman & Hall/CRC Press, Boca Raton, FL, 2014.   Google Scholar
[9] H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, July, 2008.   Google Scholar
[10]

G. A. Behie, A. Settari and D. A. Walters, Use of Coupled Reservoir and Geomechanical Modeling for Integrated Reservoir Analysis and Management, Technical Report, Canadian International Petroleum Conference, Calgary, Canada, 2000. Google Scholar

[11]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[12]

L. BociuG. GuidoboniR. Sacco and J. Webster, Analysis of nonlinear poro-elastic and poro-viscoelastic models, Archive for Rational Mechanics and Analysis, 222 (2016), 1445-1519.  doi: 10.1007/s00205-016-1024-9.  Google Scholar

[13]

M. S. Bruno, Geomechanical Analysis and Decision Analysis for Mitigating Compaction Related Casing Damage, Society of Petroleum Engineers, 2001. doi: 10.2118/71695-MS.  Google Scholar

[14]

Y. CaoS. Chen and A. J. Meir, Analysis and numerical approximations of equations of nonlinear poroelasticity, DCDS-B, 18 (2013), 1253-1273.  doi: 10.3934/dcdsb.2013.18.1253.  Google Scholar

[15]

P. CausinG. GuidoboniA. HarrisD. PradaR. Sacco and S. Terragni, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head, Mathematical Biosciences, 257 (2014), 33-41.  doi: 10.1016/j.mbs.2014.08.002.  Google Scholar

[16]

D. ChapelleJ. Sainte-MarieJ.-F. Gerbeau and I. Vignon-Clementel, A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46 (2010), 91-101.  doi: 10.1007/s00466-009-0452-x.  Google Scholar

[17]

O. Coussy, Poromechanics, Wiley, 2004. doi: 10.1002/0470092718.  Google Scholar

[18]

S. C. Cowin, Bone poroelasticity, J. Biomech., 32 (1999), 217-238.   Google Scholar

[19]

E. Detournay and A. H.-D. Cheng, Fundamentals of poroelasticity, Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, (1993), 113–171. Google Scholar

[20]

E. Detournay and A. H.-D. Cheng, Poroelastic response of a borehole in non- hydrostatic stress field, International Journal of Rock Mechanics and Mining Sciences, 25 (1988), 171-182.  doi: 10.1016/0148-9062(88)92299-1.  Google Scholar

[21]

M. B. Dusseault, M. S. Bruno and J. Barrera, Casing Shear: Causes, Cases, Cures, Society of Petroleum Engineers, 2001. doi: 10.2118/48864-MS.  Google Scholar

[22]

D. Garagash and E. Detournay, An analysis of the influence of the pressurization rate on the borehole breakdown pressure, Journal of Solids and Structures, 34 (1997), 3099-3118.  doi: 10.1016/S0020-7683(96)00174-6.  Google Scholar

[23]

G. GuidoboniA. HarrisL. CarichinoY. Arieli and B. A. Siesky, Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model, Mathematical Biosciences and Engineering, 11 (2014), 523-546.  doi: 10.3934/mbe.2014.11.523.  Google Scholar

[24]

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Tran., 33 (1990), 1587-1597.  doi: 10.1016/0017-9310(90)90015-M.  Google Scholar

[25]

J. HudsonO. StephanssonJ. AnderssonC.-F. Tsang and L. Ling, Coupled T-H-M issues related to radioactive waste repository design and performance, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143-161.   Google Scholar

[26]

J. M. HuygheT. ArtsD. H. van Campen and R. S. Reneman, Porous medium finite element model of the beating left ventricle, Am. J. Physiol., 262 (1992), 1256-1267.  doi: 10.1152/ajpheart.1992.262.4.H1256.  Google Scholar

[27]

J.-M. Kim and R. Parizek, Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system, Journal of Hydrology, 202 (1997), 231-243.  doi: 10.1016/S0022-1694(97)00067-X.  Google Scholar

[28]

W. M. LaiJ. S. Hou and V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, ASME J. Biomech. Eng., 113 (1991), 245-258.  doi: 10.1115/1.2894880.  Google Scholar

[29]

T. Langford, Northwest Houston Sinking Faster than Coastal Areas, Reporter-News.com, Aug. 28, 1997. Google Scholar

[30]

N. Lubick, Modeling Complex, Multiphase Porous Media Systems, SIAM News, 2002. Google Scholar

[31]

J. R. R. A. Martins, I. M. Kroo and J. J. Alonso., An Automated Method for Sensitivity Analysis Using Complex Variables, AIAA Paper 2000-0689 (Jan.), 2000. doi: 10.2514/6.2000-689.  Google Scholar

[32]

J. R. R. A. MartinsP. Sturdza and J. J. Alonso., The complex-step deriva- tive approximation, Journal ACM Transactions on Mathematical Software (TOMS), 29 (2003), 245-262.  doi: 10.1145/838250.838251.  Google Scholar

[33]

V. C. MowS. C. KueiW. M. Lai and C. G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, ASME J. Biomech. Eng., 102 (1980), 73-84.  doi: 10.1115/1.3138202.  Google Scholar

[34]

S. Owczarek, A Galerkin method for Biot consolidation model, Math. Mech. Solids, 15 (2010), 42-56.  doi: 10.1177/1081286508090966.  Google Scholar

[35]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity I: The continuous in time case, Computational Geosciences, 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar

[36]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity II: The continuous in time case, Computational Geosciences, 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar

[37]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity, Computational Geosciences, 12 (2008), 417-435.  doi: 10.1007/s10596-008-9082-1.  Google Scholar

[38]

R. Rajapakse, Stress analysis of borehole in poroelastic medium, Journal of Engineering Mechanics, 119 (1993), 1205-1227.  doi: 10.1061/(ASCE)0733-9399(1993)119:6(1205).  Google Scholar

[39]

T. RooseP. A. NettiL. MunnY. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model, Microvascular Research, 66 (2003), 204-212.   Google Scholar

[40]

J. Rutqvist and C.-F. Tsang, Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca mountain, Journal of Contaminant Hydrology, 62/63 (2003), 637-652.  doi: 10.1016/S0169-7722(02)00184-5.  Google Scholar

[41]

A. Settari and D. A. Walters, Advances in Coupled Geomechanical and Reservoir Modeling with Applications to Reservoir Compaction, Technical Report, SPE Reservoir Simulation Symposium, Houston, TX, 1999. doi: 10.2118/51927-MS.  Google Scholar

[42]

R. E. Showalter, Diffusion in poro-elastic media, JMAA, 251 (2000), 310-340.  doi: 10.1006/jmaa.2000.7048.  Google Scholar

[43]

A. SmillieI. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus, J. Fluid Mech., 539 (2005), 417-443.  doi: 10.1017/S0022112005005707.  Google Scholar

[44]

W. Squire and G. Trapp, Using complex variables to estimate derivatives of real functions, SIAM Review, 40 (1998), 100-112.  doi: 10.1137/S003614459631241X.  Google Scholar

[45]

N. Su and R. E. Showalter, Partially saturated flow in a poroelastic medium, DCDS-B, 1 (2001), 403-420.  doi: 10.3934/dcdsb.2001.1.403.  Google Scholar

[46]

C. C. SwanR. S. LakesR. A. Brand and K. J. Stewart, Micromechanically based poroelastic modeling of fluid flow in haversian bone, Journal of Biomechanical Engineering, 125 (2003), 25-37.  doi: 10.1115/1.1535191.  Google Scholar

[47]

K. Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage, Deuticke, Wien, 1925. Google Scholar

[48] H. F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton, N.J., 2001.  doi: 10.1515/9781400885688.  Google Scholar
[49]

Y. Wang and M. Dusseault, A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability, Journal of Petroleum Science and Engineering, 38 (2003), 187-198.  doi: 10.1016/S0920-4105(03)00032-9.  Google Scholar

[50]

A. Zenisek, The existence and uniqueness theorem in Biot's consolidation theory, Appl. Math., 29 (1984), 194-211.   Google Scholar

show all references

References:
[1]

W. Kyle Anderson and E. J. Nielsen, Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables, AIAA Journal, 39 (2001). Google Scholar

[2]

W. Kyle Anderson, E. J. Nielsen and D. L. Whitfield, Multidisciplinary Sensitivity Derivatives Using Complex Variables, Technical report, Engineering Research Center Report, Missisipi State University, mSSU-COE-ERC-98-08, July, 1998. Google Scholar

[3]

H. T. BanksK. Bekele-MaxwellL. BociuM. Noorman and G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models, Quart. Appl. Math., 75 (2017), 697-735.  doi: 10.1090/qam/1475.  Google Scholar

[4]

H. T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and G. Guidoboni, Sensitivity Analysis in Poro-Elastic and Poro-Visco-Elastic Models, CRSC-TR17-01, Center for Research in Scientific Computation, N. C. State University, Raleigh, NC, February 2017. Google Scholar

[5]

H. T. BanksK. Bekele-MaxwellL. BociuM. Noorman and K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology, Eurasian Journal of Mathematical and Computer Applications, 3 (2015), 15-68.   Google Scholar

[6]

H. T. BanksK. Bekele-MaxwellL. Bociu and C. Wang, Sensitivity via the complex-step method for delay differential equations with non-smooth initial data, Quart. Appl. Math., 75 (2017), 231-248.  doi: 10.1090/qam/1458.  Google Scholar

[7]

H. T. BanksS. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problem, J. Inverse and Ill-Posed Problems, 15 (2007), 683-708.  doi: 10.1515/jiip.2007.038.  Google Scholar

[8] H. T. BanksS. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, Chapman & Hall/CRC Press, Boca Raton, FL, 2014.   Google Scholar
[9] H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, July, 2008.   Google Scholar
[10]

G. A. Behie, A. Settari and D. A. Walters, Use of Coupled Reservoir and Geomechanical Modeling for Integrated Reservoir Analysis and Management, Technical Report, Canadian International Petroleum Conference, Calgary, Canada, 2000. Google Scholar

[11]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[12]

L. BociuG. GuidoboniR. Sacco and J. Webster, Analysis of nonlinear poro-elastic and poro-viscoelastic models, Archive for Rational Mechanics and Analysis, 222 (2016), 1445-1519.  doi: 10.1007/s00205-016-1024-9.  Google Scholar

[13]

M. S. Bruno, Geomechanical Analysis and Decision Analysis for Mitigating Compaction Related Casing Damage, Society of Petroleum Engineers, 2001. doi: 10.2118/71695-MS.  Google Scholar

[14]

Y. CaoS. Chen and A. J. Meir, Analysis and numerical approximations of equations of nonlinear poroelasticity, DCDS-B, 18 (2013), 1253-1273.  doi: 10.3934/dcdsb.2013.18.1253.  Google Scholar

[15]

P. CausinG. GuidoboniA. HarrisD. PradaR. Sacco and S. Terragni, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head, Mathematical Biosciences, 257 (2014), 33-41.  doi: 10.1016/j.mbs.2014.08.002.  Google Scholar

[16]

D. ChapelleJ. Sainte-MarieJ.-F. Gerbeau and I. Vignon-Clementel, A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46 (2010), 91-101.  doi: 10.1007/s00466-009-0452-x.  Google Scholar

[17]

O. Coussy, Poromechanics, Wiley, 2004. doi: 10.1002/0470092718.  Google Scholar

[18]

S. C. Cowin, Bone poroelasticity, J. Biomech., 32 (1999), 217-238.   Google Scholar

[19]

E. Detournay and A. H.-D. Cheng, Fundamentals of poroelasticity, Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, (1993), 113–171. Google Scholar

[20]

E. Detournay and A. H.-D. Cheng, Poroelastic response of a borehole in non- hydrostatic stress field, International Journal of Rock Mechanics and Mining Sciences, 25 (1988), 171-182.  doi: 10.1016/0148-9062(88)92299-1.  Google Scholar

[21]

M. B. Dusseault, M. S. Bruno and J. Barrera, Casing Shear: Causes, Cases, Cures, Society of Petroleum Engineers, 2001. doi: 10.2118/48864-MS.  Google Scholar

[22]

D. Garagash and E. Detournay, An analysis of the influence of the pressurization rate on the borehole breakdown pressure, Journal of Solids and Structures, 34 (1997), 3099-3118.  doi: 10.1016/S0020-7683(96)00174-6.  Google Scholar

[23]

G. GuidoboniA. HarrisL. CarichinoY. Arieli and B. A. Siesky, Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model, Mathematical Biosciences and Engineering, 11 (2014), 523-546.  doi: 10.3934/mbe.2014.11.523.  Google Scholar

[24]

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Tran., 33 (1990), 1587-1597.  doi: 10.1016/0017-9310(90)90015-M.  Google Scholar

[25]

J. HudsonO. StephanssonJ. AnderssonC.-F. Tsang and L. Ling, Coupled T-H-M issues related to radioactive waste repository design and performance, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143-161.   Google Scholar

[26]

J. M. HuygheT. ArtsD. H. van Campen and R. S. Reneman, Porous medium finite element model of the beating left ventricle, Am. J. Physiol., 262 (1992), 1256-1267.  doi: 10.1152/ajpheart.1992.262.4.H1256.  Google Scholar

[27]

J.-M. Kim and R. Parizek, Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system, Journal of Hydrology, 202 (1997), 231-243.  doi: 10.1016/S0022-1694(97)00067-X.  Google Scholar

[28]

W. M. LaiJ. S. Hou and V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, ASME J. Biomech. Eng., 113 (1991), 245-258.  doi: 10.1115/1.2894880.  Google Scholar

[29]

T. Langford, Northwest Houston Sinking Faster than Coastal Areas, Reporter-News.com, Aug. 28, 1997. Google Scholar

[30]

N. Lubick, Modeling Complex, Multiphase Porous Media Systems, SIAM News, 2002. Google Scholar

[31]

J. R. R. A. Martins, I. M. Kroo and J. J. Alonso., An Automated Method for Sensitivity Analysis Using Complex Variables, AIAA Paper 2000-0689 (Jan.), 2000. doi: 10.2514/6.2000-689.  Google Scholar

[32]

J. R. R. A. MartinsP. Sturdza and J. J. Alonso., The complex-step deriva- tive approximation, Journal ACM Transactions on Mathematical Software (TOMS), 29 (2003), 245-262.  doi: 10.1145/838250.838251.  Google Scholar

[33]

V. C. MowS. C. KueiW. M. Lai and C. G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, ASME J. Biomech. Eng., 102 (1980), 73-84.  doi: 10.1115/1.3138202.  Google Scholar

[34]

S. Owczarek, A Galerkin method for Biot consolidation model, Math. Mech. Solids, 15 (2010), 42-56.  doi: 10.1177/1081286508090966.  Google Scholar

[35]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity I: The continuous in time case, Computational Geosciences, 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar

[36]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity II: The continuous in time case, Computational Geosciences, 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar

[37]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity, Computational Geosciences, 12 (2008), 417-435.  doi: 10.1007/s10596-008-9082-1.  Google Scholar

[38]

R. Rajapakse, Stress analysis of borehole in poroelastic medium, Journal of Engineering Mechanics, 119 (1993), 1205-1227.  doi: 10.1061/(ASCE)0733-9399(1993)119:6(1205).  Google Scholar

[39]

T. RooseP. A. NettiL. MunnY. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model, Microvascular Research, 66 (2003), 204-212.   Google Scholar

[40]

J. Rutqvist and C.-F. Tsang, Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca mountain, Journal of Contaminant Hydrology, 62/63 (2003), 637-652.  doi: 10.1016/S0169-7722(02)00184-5.  Google Scholar

[41]

A. Settari and D. A. Walters, Advances in Coupled Geomechanical and Reservoir Modeling with Applications to Reservoir Compaction, Technical Report, SPE Reservoir Simulation Symposium, Houston, TX, 1999. doi: 10.2118/51927-MS.  Google Scholar

[42]

R. E. Showalter, Diffusion in poro-elastic media, JMAA, 251 (2000), 310-340.  doi: 10.1006/jmaa.2000.7048.  Google Scholar

[43]

A. SmillieI. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus, J. Fluid Mech., 539 (2005), 417-443.  doi: 10.1017/S0022112005005707.  Google Scholar

[44]

W. Squire and G. Trapp, Using complex variables to estimate derivatives of real functions, SIAM Review, 40 (1998), 100-112.  doi: 10.1137/S003614459631241X.  Google Scholar

[45]

N. Su and R. E. Showalter, Partially saturated flow in a poroelastic medium, DCDS-B, 1 (2001), 403-420.  doi: 10.3934/dcdsb.2001.1.403.  Google Scholar

[46]

C. C. SwanR. S. LakesR. A. Brand and K. J. Stewart, Micromechanically based poroelastic modeling of fluid flow in haversian bone, Journal of Biomechanical Engineering, 125 (2003), 25-37.  doi: 10.1115/1.1535191.  Google Scholar

[47]

K. Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage, Deuticke, Wien, 1925. Google Scholar

[48] H. F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton, N.J., 2001.  doi: 10.1515/9781400885688.  Google Scholar
[49]

Y. Wang and M. Dusseault, A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability, Journal of Petroleum Science and Engineering, 38 (2003), 187-198.  doi: 10.1016/S0920-4105(03)00032-9.  Google Scholar

[50]

A. Zenisek, The existence and uniqueness theorem in Biot's consolidation theory, Appl. Math., 29 (1984), 194-211.   Google Scholar

Figure 1.  Linear spline approximations of $ g_1 $ and $ \psi_1 $
Figure 2.  Sensitivity of $ u $ with respect to $ g_{1h} $ in the direction $ \phi_4 $.
Figure 3.  Sensitivity of $ u $ with respect to $ \psi_{1h} $ in the direction of $ \phi_4 $
Figure 4.  Sensitivity of $ p $ with respect to $ g_{1h} $ in the direction of $ \phi_4 $.
Figure 5.  Sensitivity of $ p $ with respect to $ \psi_{1h} $ in the direction of $ \phi_4 $.
Figure 6.  Sensitivity of $ v $ with respect to $ g_{1h} $ in the direction of $ \phi_4 $.
Figure 7.  Sensitivity of $ v $ with respect to $ \psi_{1h} $ in the direction of $ \phi_4 $.
Figure 8.  Linear spline approximations of $ g_2 $ and $ \psi_2 $
Figure 9.  Sensitivity of $ u $ with respect to $ g_{2h} $ in the direction of $ \phi_4 $.
Figure 10.  Sensitivity of $ u $ with respect to $ \psi_{2h} $ in the direction of $ \phi_4 $.
Figure 11.  Sensitivity of $ p $ with respect to $ g_{2h} $ in the direction of $ \phi_4 $.
Figure 12.  Sensitivity of $ p $ with respect to $ \psi_{2h} $ in the direction of $ \phi_4 $.
Figure 13.  Sensitivity of $ v $ with respect to $ g_{2h} $ in the direction of $ \phi_4 $.
Figure 14.  Sensitivity of $ v $ with respect to $ \psi_{2h} $ in the direction of $ \phi_4 $
Figure 15.  Sensitivity of $ v $ with respect to $ \psi_{2h} $ in the direction of $ \bar{\psi} = \sum\limits_{i = 1}^{13} \phi_i $
[1]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[2]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[3]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[6]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[11]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[14]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (107)
  • HTML views (139)
  • Cited by (0)

[Back to Top]