\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time optimal internal controls for the Lotka-McKendrick equation with spatial diffusion

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • This work is devoted to establish a bang-bang principle of time optimal controls for a controlled age-structured population evolving in a bounded domain of $ \mathbb{R}^n $. Here, the bang-bang principle is deduced by an $ L^\infty $ null-controllability result for the Lotka-McKendrick equation with spatial diffusion. This $ L^\infty $ null-controllability result is obtained by combining a methodology employed by Hegoburu and Tucsnak - originally devoted to study the null-controllability of the Lotka-McKendrick equation with spatial diffusion in the more classical $ L^2 $ setting - with a strategy developed by Wang, originally intended to study the time optimal internal controls for the heat equation.

    Mathematics Subject Classification: 93B03, 93B05, 92D25, 34K35, 35Q93.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The spectrum of the free diffusion operator $ A_0 $ (green crosses) and of $ -\Delta $ (red circles)

  • [1] B. Ainseba, Exact and approximate controllability of the age and space population dynamics structured model, Journal of Mathematical Analysis and Applications, 275 (2002), 562-574.  doi: 10.1016/S0022-247X(02)00238-X.
    [2] B. Ainseba and S. Aniţa, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations, 2004, 11 pp. (electronic).
    [3] B. Ainseba and M. Iannelli, Exact controllability of a nonlinear population-dynamics problem, Differential and Integral Equations. An International Journal for Theory & Applications, 16 (2003), 1369-1384. 
    [4] B. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), 455-474.  doi: 10.1006/jmaa.2000.6921.
    [5] S. Aniţa, Optimal harvesting for a nonlinear age-dependent population dynamics, J. Math. Anal. Appl., 226 (1998), 6-22.  doi: 10.1006/jmaa.1998.6064.
    [6] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Theory and Applications, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.
    [7] S. Aniţa and N. Hegoburu, Null controllability via comparison results for nonlinear age-structured population dynamics, Mathematics of Control, Signals, and Systems, 31 (2019), Art. 2, 38pp. doi: 10.1007/s00498-019-0232-x.
    [8] S. AniţaM. IannelliM.-Y. Kim and E.-J. Park, Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math., 58 (1998), 1648-1666.  doi: 10.1137/S0036139996301180.
    [9] J. Apraiz and L. Escauriaza, Null-control and measurable sets, ESAIM Control Optim. Calc. Var.), 19 (2013), 239-254.  doi: 10.1051/cocv/2012005.
    [10] J. ApraizL. EscauriazaG. Wang and C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc. (JEMS), 16 (2014), 2433-2475.  doi: 10.4171/JEMS/490.
    [11] V. Barbu and M. Iannelli, Optimal control of population dynamics, J. Optim. Theory Appl., 102 (1999), 1-14.  doi: 10.1023/A:1021865709529.
    [12] V. BarbuM. Iannelli and M. Martcheva, On the controllability of the Lotka-McKendrick model of population dynamics, J. Math. Anal. Appl., 253 (2001), 142-165.  doi: 10.1006/jmaa.2000.7075.
    [13] M. Brokate, Pontryagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.  doi: 10.1007/BF00276559.
    [14] B. Z. Guo and W. L. Chan, On the semigroup for age dependent population dynamics with spatial diffusion, J. Math. Anal. Appl., 184 (1994), 190-199.  doi: 10.1006/jmaa.1994.1193.
    [15] N. HegoburuP. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750.  doi: 10.1137/16M1103087.
    [16] N. Hegoburu and M. Tucsnak, Null controllability of the Lotka-McKendrick system with spatial diffusion, Math. Control Relat. Fields, 8 (2018), 707-720. 
    [17] N. Hritonenko and Y. Yatsenko, The structure of optimal time- and age-dependent harvesting in the Lotka-McKendrik population model, Math. Biosci., 208 (2007), 48-62.  doi: 10.1016/j.mbs.2006.09.008.
    [18] N. Hritonenko, Y. Yatsenko, R.-U. Goetz and A. Xabadia, A bang–bang regime in optimal harvesting of size-structured populations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), e2331–e2336.
    [19] W. Huyer, Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion, Semigroup Forum, 49 (1994), 99-114.  doi: 10.1007/BF02573475.
    [20] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa, 1995.
    [21] H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. doi: 10.1007/978-981-10-0188-8.
    [22] F. Kappel and K. Zhang, Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993), 518-549.  doi: 10.1006/jmaa.1993.1414.
    [23] O. Kavian and O. Traore, Approximate controllability by birth control for a nonlinear population dynamics model, ESAIM Control Optim. Calc. Var., 17 (2011), 1198-1213.  doi: 10.1051/cocv/2010043.
    [24] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.
    [25] G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491. 
    [26] J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris; Gauthier-Villars, Paris, 1968.
    [27] Q. Lü, Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2377-2386.  doi: 10.1007/s10114-010-9051-1.
    [28] Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273.  doi: 10.1051/cocv/2012008.
    [29] D. Maity, On the null controllability of the Lotka-Mckendrick system, working paper, 2018.
    [30] D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, Journal de Mathématiques Pures et Appliquées, 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.
    [31] N. Medhin, Optimal harvesting in age-structured populations, J. Optim. Theory Appl., 74 (1992), 413-423.  doi: 10.1007/BF00940318.
    [32] S. MicuI. Roventa and M. Tucsnak, Time optimal boundary controls for the heat equation, Journal of Functional Analysis, 263 (2012), 25-49.  doi: 10.1016/j.jfa.2012.04.009.
    [33] Y. Netrusov and Y. Safarov, Weyl asymptotic formula for the Laplacian on domains with rough boundaries, Comm. Math. Phys., 253 (2005), 481-509.  doi: 10.1007/s00220-004-1158-8.
    [34] J. SongJ. Y. YuX. Z. ZhangS. J. HuZ. X. ZhaoJ. Q. Liu and D. X. Feng, Spectral properties of population operator and asymptotic behaviour of population semigroup, Acta Math. Sci. (English Ed.), 2 (1982), 139-148.  doi: 10.1016/S0252-9602(18)30629-5.
    [35] O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci., 2006 (2006), Art. ID 49279, 20pp. doi: 10.1155/IJMMS/2006/49279.
    [36] G. Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720.  doi: 10.1137/060678191.
    [37] G. Wang and C. Zhang, Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., 55 (2017), 1862-1886.  doi: 10.1137/15M1051907.
    [38] G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, Inc., New York, Dordrecht, 1985.
    [39] J. Zabczyk, Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim., 2 (1975/76), 251-258.  doi: 10.1007/BF01464270.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(2479) PDF downloads(204) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return