# American Institute of Mathematical Sciences

December  2019, 9(4): 793-836. doi: 10.3934/mcrf.2019050

## Local null controllability of a rigid body moving into a Boussinesq flow

 1 TIFR Centre for Applicable Mathematics, Post Bag No. 6503, GKVK Post Office, Bangalore 560065, India 2 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

* Corresponding author: Takéo Takahashi

Received  January 2018 Revised  September 2019 Published  November 2019

In this paper, we study the controllability of a fluid-structure interaction system. We consider a viscous and incompressible fluid modeled by the Boussinesq system and the structure is a rigid body with arbitrary shape which satisfies Newton's laws of motion. We assume that the motion of this system is bidimensional in space. We prove the local null controllability for the velocity and temperature of the fluid and for the position and velocity of rigid body for a control acting only on the temperature equation on a fixed subset of the fluid domain.

Citation: Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control & Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050
##### References:
 [1] M. Badra and T. Takahashi, Feedback stabilization of a fluid-rigid body interaction system, Adv. Differential Equations, 19 (2014), 1137–1184, URL http://projecteuclid.org/euclid.ade/1408367290.  Google Scholar [2] A. Bensoussan, G. Da Prato, M. C. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Springer Science & Business Media, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar [3] M. Boulakia and S. Guerrero, Local null controllability of a fluid-solid interaction problem in dimension 3, J. Eur. Math. Soc. (JEMS), 15 (2013), 825-856.  doi: 10.4171/JEMS/378.  Google Scholar [4] M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM Control Optim. Calc. Var., 14 (2008), 1-42.  doi: 10.1051/cocv:2007031.  Google Scholar [5] N. Carreño, Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain, Math. Control Relat. Fields, 2 (2012), 361-382.  doi: 10.3934/mcrf.2012.2.361.  Google Scholar [6] N. Carreño and S. Guerrero, Local null controllability of the $N$-dimensional Navier-Stokes system with $N-1$ scalar controls in an arbitrary control domain, J. Math. Fluid Mech., 15 (2013), 139-153.  doi: 10.1007/s00021-012-0093-2.  Google Scholar [7] C. Conca, H. J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042.   Google Scholar [8] J.-M. Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var., 1 (1995/96), 35-75.  doi: 10.1051/cocv:1996102.  Google Scholar [9] J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar [10] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar [11] B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71.  doi: 10.1007/s002050050136.  Google Scholar [12] A. Doubova and E. Fernández-Cara, Some control results for simplified one-dimensional models of fluid-solid interaction, Math. Models Methods Appl. Sci., 15 (2005), 783-824.  doi: 10.1142/S0218202505000522.  Google Scholar [13] C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar [14] E. Feireisl, On the motion of rigid bodies in a viscous fluid, Appl. Math., 47 (2002), 463–484, Mathematical theory in fluid mechanics (Paseky, 2001). doi: 10.1023/A:1023245704966.  Google Scholar [15] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal., 167 (2003), 281-308.  doi: 10.1007/s00205-002-0242-5.  Google Scholar [16] E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar [17] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1399-1446.  doi: 10.1137/S0363012904439696.  Google Scholar [18] E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Local exact controllabilityof the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501–1542. doi: 10.1016/j.matpur.2004.02.010.  Google Scholar [19] E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar [20] A. V. Fursikov and O. Y. Emanuilov, Èxact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, 54 (1999), 93–146; translation in Russian Math. Surveys, 54 (1999), 565–618. doi: 10.1070/rm1999v054n03ABEH000153.  Google Scholar [21] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, vol. 34 of Lecture Notes Series, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar [22] A. V. Fursikov and O. Y. Imanuvilov, Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optim., 36 (1998), 391-421.  doi: 10.1137/S0363012996296796.  Google Scholar [23] G. P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., 148 (1999), 53-88.  doi: 10.1007/s002050050156.  Google Scholar [24] G. P. Galdi and A. L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in Nonlinear Problems in Mathematical Physics and Related Topics, I, vol. 1 of Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, 2002, 121–144. doi: 10.1007/978-1-4615-0777-2_8.  Google Scholar [25] M. González-Burgos, S. Guerrero and J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal., 8 (2009), 311-333.  doi: 10.3934/cpaa.2009.8.311.  Google Scholar [26] C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636.  doi: 10.1051/m2an:2000159.  Google Scholar [27] S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29–61, . doi: 10.1016/j.anihpc.2005.01.002.  Google Scholar [28] M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266.  doi: 10.1007/PL00000954.  Google Scholar [29] O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl. (9), 87 (2007), 408–437. doi: 10.1016/j.matpur.2007.01.005.  Google Scholar [30] O. Y. Imanuvilov, Local exact controllability for the $2$-D Navier-Stokes equations with the Navier slip boundary conditions, in Turbulence Modeling and Vortex Dynamics (Istanbul, 1996), vol. 491 of Lecture Notes in Phys., Springer, Berlin, 1997, 148–168. doi: 10.1007/BFb0105035.  Google Scholar [31] O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.  doi: 10.1051/cocv:2001103.  Google Scholar [32] O. Y. Imanuvilov, J. P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math. Ser. B, 30 (2009), 333-378.  doi: 10.1007/s11401-008-0280-x.  Google Scholar [33] J.-L. Lions and E. Zuazua, A generic uniqueness result for the Stokes system and its control theoretical consequences, in Partial Differential Equations and Applications, vol. 177 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1996, 221–235.  Google Scholar [34] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model, ESAIM Control Optim. Calc. Var., 19 (2013), 20-42.  doi: 10.1051/cocv/2011196.  Google Scholar [35] S. Nečasová, On the motion of several rigid bodies in an incompressible non-Newtonian and heat-conducting fluid, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 325-352.  doi: 10.1007/s11565-009-0085-1.  Google Scholar [36] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar [37] J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: The Helmholtz model, ESAIM Control Optim. Calc. Var., 11 (2005), 180-203.  doi: 10.1051/cocv:2005006.  Google Scholar [38] J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), 113-147.  doi: 10.1007/s002050100172.  Google Scholar [39] D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., 4 (1987), 99-110.  doi: 10.1007/BF03167757.  Google Scholar [40] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, 8 (2003), 1499-1532.   Google Scholar [41] T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6 (2004), 53-77.  doi: 10.1007/s00021-003-0083-4.  Google Scholar [42] R. Temam, Navier-Stokes Equations, vol. 2 of Studies in Mathematics and its Applications, Revised edition, North-Holland Publishing Co., Amsterdam-New York, 1979, Theory and numerical analysis, With an appendix by F. Thomasset.  Google Scholar [43] R. Temam, Problèmes Mathématiques en Plasticité, vol. 12 of Méthodes Mathématiques de l'Informatique [Mathematical Methods of Information Science], Gauthier-Villars, Montrouge, 1983.  Google Scholar [44] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

##### References:
 [1] M. Badra and T. Takahashi, Feedback stabilization of a fluid-rigid body interaction system, Adv. Differential Equations, 19 (2014), 1137–1184, URL http://projecteuclid.org/euclid.ade/1408367290.  Google Scholar [2] A. Bensoussan, G. Da Prato, M. C. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Springer Science & Business Media, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar [3] M. Boulakia and S. Guerrero, Local null controllability of a fluid-solid interaction problem in dimension 3, J. Eur. Math. Soc. (JEMS), 15 (2013), 825-856.  doi: 10.4171/JEMS/378.  Google Scholar [4] M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM Control Optim. Calc. Var., 14 (2008), 1-42.  doi: 10.1051/cocv:2007031.  Google Scholar [5] N. Carreño, Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain, Math. Control Relat. Fields, 2 (2012), 361-382.  doi: 10.3934/mcrf.2012.2.361.  Google Scholar [6] N. Carreño and S. Guerrero, Local null controllability of the $N$-dimensional Navier-Stokes system with $N-1$ scalar controls in an arbitrary control domain, J. Math. Fluid Mech., 15 (2013), 139-153.  doi: 10.1007/s00021-012-0093-2.  Google Scholar [7] C. Conca, H. J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042.   Google Scholar [8] J.-M. Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var., 1 (1995/96), 35-75.  doi: 10.1051/cocv:1996102.  Google Scholar [9] J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar [10] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar [11] B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71.  doi: 10.1007/s002050050136.  Google Scholar [12] A. Doubova and E. Fernández-Cara, Some control results for simplified one-dimensional models of fluid-solid interaction, Math. Models Methods Appl. Sci., 15 (2005), 783-824.  doi: 10.1142/S0218202505000522.  Google Scholar [13] C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar [14] E. Feireisl, On the motion of rigid bodies in a viscous fluid, Appl. Math., 47 (2002), 463–484, Mathematical theory in fluid mechanics (Paseky, 2001). doi: 10.1023/A:1023245704966.  Google Scholar [15] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal., 167 (2003), 281-308.  doi: 10.1007/s00205-002-0242-5.  Google Scholar [16] E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar [17] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1399-1446.  doi: 10.1137/S0363012904439696.  Google Scholar [18] E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Local exact controllabilityof the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501–1542. doi: 10.1016/j.matpur.2004.02.010.  Google Scholar [19] E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar [20] A. V. Fursikov and O. Y. Emanuilov, Èxact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, 54 (1999), 93–146; translation in Russian Math. Surveys, 54 (1999), 565–618. doi: 10.1070/rm1999v054n03ABEH000153.  Google Scholar [21] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, vol. 34 of Lecture Notes Series, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar [22] A. V. Fursikov and O. Y. Imanuvilov, Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optim., 36 (1998), 391-421.  doi: 10.1137/S0363012996296796.  Google Scholar [23] G. P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., 148 (1999), 53-88.  doi: 10.1007/s002050050156.  Google Scholar [24] G. P. Galdi and A. L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in Nonlinear Problems in Mathematical Physics and Related Topics, I, vol. 1 of Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, 2002, 121–144. doi: 10.1007/978-1-4615-0777-2_8.  Google Scholar [25] M. González-Burgos, S. Guerrero and J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal., 8 (2009), 311-333.  doi: 10.3934/cpaa.2009.8.311.  Google Scholar [26] C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636.  doi: 10.1051/m2an:2000159.  Google Scholar [27] S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29–61, . doi: 10.1016/j.anihpc.2005.01.002.  Google Scholar [28] M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266.  doi: 10.1007/PL00000954.  Google Scholar [29] O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl. (9), 87 (2007), 408–437. doi: 10.1016/j.matpur.2007.01.005.  Google Scholar [30] O. Y. Imanuvilov, Local exact controllability for the $2$-D Navier-Stokes equations with the Navier slip boundary conditions, in Turbulence Modeling and Vortex Dynamics (Istanbul, 1996), vol. 491 of Lecture Notes in Phys., Springer, Berlin, 1997, 148–168. doi: 10.1007/BFb0105035.  Google Scholar [31] O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.  doi: 10.1051/cocv:2001103.  Google Scholar [32] O. Y. Imanuvilov, J. P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math. Ser. B, 30 (2009), 333-378.  doi: 10.1007/s11401-008-0280-x.  Google Scholar [33] J.-L. Lions and E. Zuazua, A generic uniqueness result for the Stokes system and its control theoretical consequences, in Partial Differential Equations and Applications, vol. 177 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1996, 221–235.  Google Scholar [34] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model, ESAIM Control Optim. Calc. Var., 19 (2013), 20-42.  doi: 10.1051/cocv/2011196.  Google Scholar [35] S. Nečasová, On the motion of several rigid bodies in an incompressible non-Newtonian and heat-conducting fluid, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 325-352.  doi: 10.1007/s11565-009-0085-1.  Google Scholar [36] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar [37] J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: The Helmholtz model, ESAIM Control Optim. Calc. Var., 11 (2005), 180-203.  doi: 10.1051/cocv:2005006.  Google Scholar [38] J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), 113-147.  doi: 10.1007/s002050100172.  Google Scholar [39] D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., 4 (1987), 99-110.  doi: 10.1007/BF03167757.  Google Scholar [40] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, 8 (2003), 1499-1532.   Google Scholar [41] T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6 (2004), 53-77.  doi: 10.1007/s00021-003-0083-4.  Google Scholar [42] R. Temam, Navier-Stokes Equations, vol. 2 of Studies in Mathematics and its Applications, Revised edition, North-Holland Publishing Co., Amsterdam-New York, 1979, Theory and numerical analysis, With an appendix by F. Thomasset.  Google Scholar [43] R. Temam, Problèmes Mathématiques en Plasticité, vol. 12 of Méthodes Mathématiques de l'Informatique [Mathematical Methods of Information Science], Gauthier-Villars, Montrouge, 1983.  Google Scholar [44] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar
 [1] Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39 [2] George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 [3] Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633 [4] Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397 [5] George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817 [6] Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207 [7] Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199 [8] Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787 [9] Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355 [10] Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557 [11] Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169 [12] Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397 [13] Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539 [14] George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563 [15] Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012 [16] Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269 [17] Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295 [18] Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102 [19] George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557 [20] Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

2018 Impact Factor: 1.292

Article outline