
-
Previous Article
Necessary condition for optimal control of doubly stochastic systems
- MCRF Home
- This Issue
-
Next Article
Finite element error estimates for one-dimensional elliptic optimal control by BV-functions
Optimal investment problem with delay under partial information
1. | School of Mathematics, China University of Mining and Technology, Jiangsu 221116, China |
2. | Department of Mathematics, Southern University of Science and Technology, Shenzhen, China |
3. | School of Mathematics, Southeast University, Nanjing, China |
In this paper, we investigate the optimal investment problem in the presence of delay under partial information. We assume that the financial market consists of one risk free asset (bond) and one risky asset (stock) and only the price of the risky asset can be observed from the financial market. The objective of the investor is to maximize the expected utility of the terminal wealth and average of the path segment. By using the filtering theory, we establish the separation principle and reduce the problem to the complete information case. Explicit expressions for the value function and the corresponding optimal strategy are obtained by solving the corresponding Hamilton-Jacobi-Bellman equation. Furthermore, we study the sensitivity of the optimal investment strategy on the model parameters in a numerical section and both of the full and partial information schemes are simulated and compared.
References:
[1] |
C. X. A and Z. F. Li,
Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model, Insurance Math. Econom., 61 (2015), 181-196.
doi: 10.1016/j.insmatheco.2015.01.005. |
[2] |
L. H. Bai and J. Y. Guo,
Utility maximization with partial information: Hamilton-Jacobi-Bellman equation approach, Front. Math. China, 2 (2007), 527-537.
doi: 10.1007/s11464-007-0032-3. |
[3] |
T. Björk, M. H. Davis and C. Landén,
Optimal investment under partial information, Math. Methods Oper. Res., 71 (2010), 371-399.
doi: 10.1007/s00186-010-0301-x. |
[4] |
S. Browne,
Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937. |
[5] |
M. H. Chang, T. Pang and Y. Yang,
A stochastic portfolio optimization model with bounded memory, Math. Oper. Res., 36 (2011), 604-619.
doi: 10.1287/moor.1110.0508. |
[6] |
I. Elsanousi, B. Øksendal and A. Sulem,
Some solvable stochastic control problems with delay, Stochastics and Stochastic Rep., 71 (2000), 69-89.
doi: 10.1080/17442500008834259. |
[7] |
H. Hata and S. J. Sheu,
An optimal consumption and investment problem with partial information, Adv. in Appl. Probab., 50 (2018), 131-153.
doi: 10.1017/apr.2018.7. |
[8] |
P. Lakner,
Utility maximization with partial information, Stochastic Process. Appl., 56 (1995), 247-273.
doi: 10.1016/0304-4149(94)00073-3. |
[9] |
B. Larssen,
Dynamic programming in stochastic control of systems with delay, Stoch. Stoch. Rep., 74 (2002), 651-673.
doi: 10.1080/1045112021000060764. |
[10] |
Z. Liang and M. Song,
Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance Math. Econom., 65 (2015), 66-76.
doi: 10.1016/j.insmatheco.2015.08.008. |
[11] |
B. Øksendal, A. Sulem and T. Zhang,
Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. in Appl. Probab., 43 (2011), 572-596.
doi: 10.1239/aap/1308662493. |
[12] |
T. Pang and A. Hussain,
A stochastic portfolio optimization model with complete memory, Stoch. Anal. Appl., 35 (2017), 742-766.
doi: 10.1080/07362994.2017.1299629. |
[13] |
T. Pang and A. Hussain,
An infinite time horizon portfolio optimization model with delays, Math. Control Relat. Fields, 6 (2016), 629-651.
doi: 10.3934/mcrf.2016018. |
[14] |
T. Pang and A. Hussain, An application of functional Ito's formula to stochastic portfolio optimization with bounded memory, Proceedings of the SIAM Conference on Control and Its Applications, Paris, France, 2015,159–166.
doi: 10.1137/1.9781611974072.23. |
[15] |
X. C. Peng and Y. J. Hu,
Optimal proportional reinsurance and investment under partial information, Insurance Math. Econom., 53 (2013), 416-428.
doi: 10.1016/j.insmatheco.2013.07.004. |
[16] |
J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, in Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 565-601.
doi: 10.1016/B978-0-12-775850-3.50017-0. |
[17] |
Y. Shen and Y. Zeng,
Optimal investment re-insurance with delay for mean-variance insurers: A maximum principle approach, Insurance Math. Econom., 57 (2014), 1-12.
doi: 10.1016/j.insmatheco.2014.04.004. |
[18] |
J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics, 18, Oxford University Press, Oxford, 2008.
![]() |
[19] |
J. Xiong and X. Y. Zhou,
Mean-variance portfolio selection under partial information, SIAM J. Control Optim., 46 (2007), 156-175.
doi: 10.1137/050641132. |
[20] |
H. L. Yang and L. H. Zhang,
Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009. |
[21] |
Y. Zeng and Z. F. Li,
Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance Math. Econom., 49 (2011), 145-154.
doi: 10.1016/j.insmatheco.2011.01.001. |
show all references
References:
[1] |
C. X. A and Z. F. Li,
Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model, Insurance Math. Econom., 61 (2015), 181-196.
doi: 10.1016/j.insmatheco.2015.01.005. |
[2] |
L. H. Bai and J. Y. Guo,
Utility maximization with partial information: Hamilton-Jacobi-Bellman equation approach, Front. Math. China, 2 (2007), 527-537.
doi: 10.1007/s11464-007-0032-3. |
[3] |
T. Björk, M. H. Davis and C. Landén,
Optimal investment under partial information, Math. Methods Oper. Res., 71 (2010), 371-399.
doi: 10.1007/s00186-010-0301-x. |
[4] |
S. Browne,
Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937. |
[5] |
M. H. Chang, T. Pang and Y. Yang,
A stochastic portfolio optimization model with bounded memory, Math. Oper. Res., 36 (2011), 604-619.
doi: 10.1287/moor.1110.0508. |
[6] |
I. Elsanousi, B. Øksendal and A. Sulem,
Some solvable stochastic control problems with delay, Stochastics and Stochastic Rep., 71 (2000), 69-89.
doi: 10.1080/17442500008834259. |
[7] |
H. Hata and S. J. Sheu,
An optimal consumption and investment problem with partial information, Adv. in Appl. Probab., 50 (2018), 131-153.
doi: 10.1017/apr.2018.7. |
[8] |
P. Lakner,
Utility maximization with partial information, Stochastic Process. Appl., 56 (1995), 247-273.
doi: 10.1016/0304-4149(94)00073-3. |
[9] |
B. Larssen,
Dynamic programming in stochastic control of systems with delay, Stoch. Stoch. Rep., 74 (2002), 651-673.
doi: 10.1080/1045112021000060764. |
[10] |
Z. Liang and M. Song,
Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance Math. Econom., 65 (2015), 66-76.
doi: 10.1016/j.insmatheco.2015.08.008. |
[11] |
B. Øksendal, A. Sulem and T. Zhang,
Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. in Appl. Probab., 43 (2011), 572-596.
doi: 10.1239/aap/1308662493. |
[12] |
T. Pang and A. Hussain,
A stochastic portfolio optimization model with complete memory, Stoch. Anal. Appl., 35 (2017), 742-766.
doi: 10.1080/07362994.2017.1299629. |
[13] |
T. Pang and A. Hussain,
An infinite time horizon portfolio optimization model with delays, Math. Control Relat. Fields, 6 (2016), 629-651.
doi: 10.3934/mcrf.2016018. |
[14] |
T. Pang and A. Hussain, An application of functional Ito's formula to stochastic portfolio optimization with bounded memory, Proceedings of the SIAM Conference on Control and Its Applications, Paris, France, 2015,159–166.
doi: 10.1137/1.9781611974072.23. |
[15] |
X. C. Peng and Y. J. Hu,
Optimal proportional reinsurance and investment under partial information, Insurance Math. Econom., 53 (2013), 416-428.
doi: 10.1016/j.insmatheco.2013.07.004. |
[16] |
J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, in Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 565-601.
doi: 10.1016/B978-0-12-775850-3.50017-0. |
[17] |
Y. Shen and Y. Zeng,
Optimal investment re-insurance with delay for mean-variance insurers: A maximum principle approach, Insurance Math. Econom., 57 (2014), 1-12.
doi: 10.1016/j.insmatheco.2014.04.004. |
[18] |
J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics, 18, Oxford University Press, Oxford, 2008.
![]() |
[19] |
J. Xiong and X. Y. Zhou,
Mean-variance portfolio selection under partial information, SIAM J. Control Optim., 46 (2007), 156-175.
doi: 10.1137/050641132. |
[20] |
H. L. Yang and L. H. Zhang,
Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009. |
[21] |
Y. Zeng and Z. F. Li,
Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance Math. Econom., 49 (2011), 145-154.
doi: 10.1016/j.insmatheco.2011.01.001. |








[1] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[2] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[3] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[4] |
Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003 |
[5] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
[6] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[7] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[8] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[9] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[10] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[11] |
Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056 |
[12] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[13] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[14] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[15] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[16] |
Chuan Ding, Da-Hai Li. Angel capitalists exit decisions under information asymmetry: IPO or acquisitions. Journal of Industrial & Management Optimization, 2021, 17 (1) : 369-392. doi: 10.3934/jimo.2019116 |
[17] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[18] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[19] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[20] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021015 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]