[1]
|
D. Armbruster, C. De Beer, M. Freitag, T. Jagalski and C. Ringhofer, Autonomous control of production networks using a pheromone approach, Phys. A, 363 (2006), 104-114.
doi: 10.1016/j.physa.2006.01.052.
|
[2]
|
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM J. Appl. Math., 66 (2006), 896-920.
doi: 10.1137/040604625.
|
[3]
|
D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for reentrant supply chains, Multiscale Model. Simul., 3 (2005), 782-800.
doi: 10.1137/030601636.
|
[4]
|
M. K. Banda and M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws, Math. Control Relat. Fields, 3 (2013), 121-142.
doi: 10.3934/mcrf.2013.3.121.
|
[5]
|
M. Barreau, A. Seuret, F. Gouaisbaut and L. Baudouin, Lyapunov stability analysis of a string equation coupled with an ordinary differential system, IEEE Trans. Automat. Control, 63 (2018), 3850-3857.
doi: 10.1109/TAC.2018.2802495.
|
[6]
|
G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, PNLDE Subseries in Control, Progress in Nonlinear Differential Equations and Their Applications, 88, Birkhäuser/Springer, 2016.
doi: 10.1007/978-3-319-32062-5.
|
[7]
|
G. Bastin, J.-M. Coron and B. D'Andrea-Novel, Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks, Lecture notes for the Pre-Congress Workshop on Complex Embedded and Networked Control Systems, 17th IFAC World Congress, Seoul, Korea, 2008.
|
[8]
|
G. Bastin, B. Haut, J.-M. Coron and B. D'andréa-Novel, Lyapunov stability analysis of networks of scalar conservation laws, Netw. Heterog. Media, 2 (2007), 751-759.
doi: 10.3934/nhm.2007.2.751.
|
[9]
|
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics, Netw. Heterog. Media, 2 (2007), 661-694.
doi: 10.3934/nhm.2007.2.661.
|
[10]
|
F. Castillo, L. Dugard, C. Prieur and E. Witrant, Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems, 51st IEEE Conference on Decision and Control, Maui, HI, 2012, 2952–2957.
doi: 10.1109/CDC.2012.6426802.
|
[11]
|
J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.
|
[12]
|
J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasilinear hyperbolic systems: Lyapunov stability for the $C^1$-norm, SIAM J. Control Optim., 53 (2015), 1464-1483.
doi: 10.1137/14097080X.
|
[13]
|
J.-M. Coron, G. Bastin and B. D'Andrea-Novel, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.
doi: 10.1109/TAC.2006.887903.
|
[14]
|
J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337-1359.
doi: 10.3934/dcdsb.2010.14.1337.
|
[15]
|
J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity, J. Differential Equations, 252 (2012), 181-201.
doi: 10.1016/j.jde.2011.08.042.
|
[16]
|
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains. A Continuous Approach, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898717600.
|
[17]
|
C. D'Apice and R. Manzo, A fluid dynamic model for supply chains, Netw. Heterog. Media, 1 (2006), 379-398.
doi: 10.3934/nhm.2006.1.379.
|
[18]
|
A. Diagne, G. Bastin and J.-M. Coron, Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws, Automatica J. IFAC, 48 (2012), 109-114.
doi: 10.1016/j.automatica.2011.09.030.
|
[19]
|
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Commun. Math. Sci., 4 (2006), 315-330.
doi: 10.4310/CMS.2006.v4.n2.a3.
|
[20]
|
S. Göttlich, M. Herty and P. Schillen, Electric transmission lines: Control and numerical discretization, Optimal Control Appl. Methods, 37 (2016), 980-995.
doi: 10.1002/oca.2219.
|
[21]
|
S. Göttlich and P. Schillen, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, Eur. J. Control, 35 (2017), 11-18.
doi: 10.1016/j.ejcon.2017.02.002.
|
[22]
|
M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays, Systems Control Lett., 57 (2008), 750-758.
doi: 10.1016/j.sysconle.2008.02.005.
|
[23]
|
T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010.
|
[24]
|
S. Tang and C. Xie, State and output feedback boundary control for a coupled PDE-ODE system, Systems Control Lett., 60 (2011), 540-545.
doi: 10.1016/j.sysconle.2011.04.011.
|
[25]
|
H.-N. Wu and J.-W. Wang, Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics, Nonlinear Dynam., 72 (2013), 615-628.
doi: 10.1007/s11071-012-0740-4.
|
[26]
|
H.-N. Wu and J.-W. Wang, Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems, Automatica J. IFAC, 50 (2014), 2787-2798.
doi: 10.1016/j.automatica.2014.09.006.
|