September  2020, 10(3): 471-491. doi: 10.3934/mcrf.2020007

Sparse optimal control for the heat equation with mixed control-state constraints

1. 

Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, 39005 Santander, Spain

2. 

Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany

* Corresponding author: Fredi Tröltzsch

Dedicated to Prof. Dr. Fréderic Bonnans on the occasion of his 60th birthday

Received  February 2018 Revised  December 2018 Published  December 2019

Fund Project: The first author was partially supported by Spanish Ministerio de Economía, Industria y Competitividad under projects MTM2014-57531-P and MTM2017-83185-P. The second author was supported by the Collaborative Research Center SFB 910, TU Berlin, project B6

A problem of sparse optimal control for the heat equation is considered, where pointwise bounds on the control and mixed pointwise control-state constraints are given. A standard quadratic tracking type functional is to be minimized that includes a Tikhonov regularization term and the $ L^1 $-norm of the control accounting for the sparsity. Special emphasis is laid on existence and regularity of Lagrange multipliers for the mixed control-state constraints. To this aim, a duality theorem for linear programming problems in Hilbert spaces is proved and applied to the given optimal control problem.

Citation: Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control & Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007
References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[2]

E. CasasR. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$ cost functional, SIAM J. Optim., 22 (2012), 795-820.  doi: 10.1137/110834366.  Google Scholar

[3]

R. C. Grinold, Continuous programming. I. Linear objectives, J. Math. Anal. Appl., 28 (1969), 32-51.  doi: 10.1016/0022-247X(69)90106-1.  Google Scholar

[4]

R. C. Grinold, Symmetric duality for continuous linear programs, SIAM J. Appl. Math., 18 (1970), 84-97.  doi: 10.1137/0118011.  Google Scholar

[5]

J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[6]

W. Krabs, Zur Dualitätstheorie bei linearen Optimierungsproblemen in halbgeordneten Vektorräumen, Math. Z., 121 (1971), 320-328.  doi: 10.1007/BF01109978.  Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[8]

J.-L. Lions, Contrôle Optimal de Systèmes Gouvernès par des Équations aux Dérivées Partielles, Avant Propos de P. Lelong Dunod, Paris, Gauthier-Villars, Paris, 1968.  Google Scholar

[9]

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969.  Google Scholar

[10]

A. Rösch and F. Tröltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints, SIAM J. Control and Optimization, 46 (2007), 1098-1115.  doi: 10.1137/060671565.  Google Scholar

[11]

F. Tröltzsch, Existenz- und Dualitätsaussagen für lineare Optimierungsaufgaben in reflexiven Banach-Räumen., Math. Operationsforschung und Statistik, 6 (1975), 901-912.  doi: 10.1080/02331887508801268.  Google Scholar

[12]

F. Tröltzsch, A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state, Z. Angew. Math. Mech., 59 (1979), 737-739.  doi: 10.1002/zamm.19790591208.  Google Scholar

[13]

W. F. Tyndall, A duality theorem for a class of continuous linear programming problems, J. Soc. Indust. Appl. Math., 13 (1965), 644-666.  doi: 10.1137/0113043.  Google Scholar

show all references

References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[2]

E. CasasR. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$ cost functional, SIAM J. Optim., 22 (2012), 795-820.  doi: 10.1137/110834366.  Google Scholar

[3]

R. C. Grinold, Continuous programming. I. Linear objectives, J. Math. Anal. Appl., 28 (1969), 32-51.  doi: 10.1016/0022-247X(69)90106-1.  Google Scholar

[4]

R. C. Grinold, Symmetric duality for continuous linear programs, SIAM J. Appl. Math., 18 (1970), 84-97.  doi: 10.1137/0118011.  Google Scholar

[5]

J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[6]

W. Krabs, Zur Dualitätstheorie bei linearen Optimierungsproblemen in halbgeordneten Vektorräumen, Math. Z., 121 (1971), 320-328.  doi: 10.1007/BF01109978.  Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[8]

J.-L. Lions, Contrôle Optimal de Systèmes Gouvernès par des Équations aux Dérivées Partielles, Avant Propos de P. Lelong Dunod, Paris, Gauthier-Villars, Paris, 1968.  Google Scholar

[9]

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969.  Google Scholar

[10]

A. Rösch and F. Tröltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints, SIAM J. Control and Optimization, 46 (2007), 1098-1115.  doi: 10.1137/060671565.  Google Scholar

[11]

F. Tröltzsch, Existenz- und Dualitätsaussagen für lineare Optimierungsaufgaben in reflexiven Banach-Räumen., Math. Operationsforschung und Statistik, 6 (1975), 901-912.  doi: 10.1080/02331887508801268.  Google Scholar

[12]

F. Tröltzsch, A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state, Z. Angew. Math. Mech., 59 (1979), 737-739.  doi: 10.1002/zamm.19790591208.  Google Scholar

[13]

W. F. Tyndall, A duality theorem for a class of continuous linear programming problems, J. Soc. Indust. Appl. Math., 13 (1965), 644-666.  doi: 10.1137/0113043.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[4]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[9]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[10]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[11]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[12]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[13]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[14]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[15]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[16]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[17]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[18]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (179)
  • HTML views (432)
  • Cited by (0)

Other articles
by authors

[Back to Top]