• Previous Article
    A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices
  • MCRF Home
  • This Issue
  • Next Article
    State-constrained semilinear elliptic optimization problems with unrestricted sparse controls
September  2020, 10(3): 547-571. doi: 10.3934/mcrf.2020010

Optimal periodic control for scalar dynamics under integral constraint on the input

1. 

Avignon Université, Laboratoire de Mathématiques d'Avignon (EA 2151) F-84018 Avignon, France., MISTEA, Univ Montpellier, INRA, Montpellier SupAgro, France

2. 

MISTEA, Univ Montpellier, INRA, Montpellier SupAgro, France

Dedicated to Prof. Dr. Frédéric Bonnans on the occasion of his 60th birthday

Received  February 2018 Revised  February 2019 Published  December 2019

This paper studies a periodic optimal control problem governed by a one-dimensional system, linear with respect to the control $ u $, under an integral constraint on $ u $. We give conditions for which the value of the cost function at steady state with a constant control $ \bar u $ can be improved by considering periodic control $ u $ with average value equal to $ \bar u $. This leads to the so-called "over-yielding" met in several applications. With the use of the Pontryagin Maximum Principle, we provide the optimal synthesis of periodic strategies under the integral constraint. The results are illustrated on a single population model in order to study the effect of periodic inputs on the utility of the stock of resource.

Citation: Térence Bayen, Alain Rapaport, Fatima-Zahra Tani. Optimal periodic control for scalar dynamics under integral constraint on the input. Mathematical Control & Related Fields, 2020, 10 (3) : 547-571. doi: 10.3934/mcrf.2020010
References:
[1]

E.-M. Abulesz and G. Lyberatos, Periodic impulse-forcing of nonlinear systems: A new method, International Journal of Control, 48 (1988), 469-480.  doi: 10.1080/00207178808906191.  Google Scholar

[2]

E.-M. Abulesz and G. Lyberatos, Periodic optimization of microbial growth processes, Biotechnology and Bioengineering, 29 (1987), 1059-1067.  doi: 10.1002/bit.260290904.  Google Scholar

[3]

E. M. Abulesz and G. Lyberatos, Periodic operation of a continuous culture of Baker's yeast, Biotechnology and Bioengineering, 34 (1989), 741-749.  doi: 10.1002/bit.260340603.  Google Scholar

[4]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.  Google Scholar

[5]

D. S. Bernstein and E. G. Gilbert, Optimal periodic control: The $\pi$ test revisited, IEEE Transactions on Automatic Control, 25 (1980), 673-684.  doi: 10.1109/TAC.1980.1102394.  Google Scholar

[6]

S. BittantiG. Fronza and G. Guardabassi, Periodic control: A frequency domain approach, IEEE Transactions on Automatic Control, 18 (1973), 33-38.  doi: 10.1109/tac.1973.1100225.  Google Scholar

[7]

S. BittantiA. Locatelli and C. Maffezzoni, Second-variation methods in periodic optimization, J. Optimization Theory and Appl., 14 (1974), 31-49.  doi: 10.1007/BF00933173.  Google Scholar

[8]

G. GuardabassiA. Locatelli and S. Rinaldi, Status of periodic optimization of dynamical systems, J. Optimization Theory and Appl., 14 (1974), 1-20.  doi: 10.1007/BF00933171.  Google Scholar

[9]

L. Cesari, Optimization-Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics (New York), 17. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[10]

C. W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation, Third edition, Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2010.  Google Scholar

[11]

R. T. EvansJ. L. Speyer and C.-H. Chuang, Solution of a periodic optimal control problem by asymptotic series, J. Optimization Theory and Appl., 52 (1987), 343-364.  doi: 10.1007/BF00938212.  Google Scholar

[12]

E. G. Gilbert, Optimal periodic control: A general theory of necessary conditions, SIAM J. Control Optim., 15 (1977), 717-746.  doi: 10.1137/0315046.  Google Scholar

[13]

J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2017.  Google Scholar

[14]

V. HatzimanikatisG. LyberatosS. Pavlou and S. A. Svoronos, A method for pulsed periodic optimization of chemical reaction systems, Chemical Engineering Science, 48 (1993), 789-797.  doi: 10.1016/0009-2509(93)80144-F.  Google Scholar

[15]

L. Idels, Stability analysis of periodic Fox production models, Can. Appl. Math. Q., 14 (2006), 331-341.   Google Scholar

[16]

L. Idels and M. Wang, Harvesting strategies with modified effort function, Intern. J. of Modelling, Identification and Control, Special Issue "Modeling Complex Systems" (IJMIC), 3 (2008), 83-87.   Google Scholar

[17]

C. Maffezzoni, Hamilton-Jacobi theory for periodic control problems, J. Optimization Theory and Appl., 14 (1974), 21-29.  doi: 10.1007/BF00933172.  Google Scholar

[18]

L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[19]

L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, Pergamon Press Book, The Macmillan Co., New York, 1964.  Google Scholar

[20]

J. L. Speyer and R. T. Evans, A second variation theory for optimal periodic processes, IEEE Transactions on Automatic Control, 29 (1984), 138-148.  doi: 10.1109/TAC.1984.1103482.  Google Scholar

[21]

Q. H. Wang and J. L. Speyer, Necessary and sufficient conditions for local optimality of a periodic process, SIAM J. Control Optim., 28 (1990), 482-497.  doi: 10.1137/0328027.  Google Scholar

show all references

References:
[1]

E.-M. Abulesz and G. Lyberatos, Periodic impulse-forcing of nonlinear systems: A new method, International Journal of Control, 48 (1988), 469-480.  doi: 10.1080/00207178808906191.  Google Scholar

[2]

E.-M. Abulesz and G. Lyberatos, Periodic optimization of microbial growth processes, Biotechnology and Bioengineering, 29 (1987), 1059-1067.  doi: 10.1002/bit.260290904.  Google Scholar

[3]

E. M. Abulesz and G. Lyberatos, Periodic operation of a continuous culture of Baker's yeast, Biotechnology and Bioengineering, 34 (1989), 741-749.  doi: 10.1002/bit.260340603.  Google Scholar

[4]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.  Google Scholar

[5]

D. S. Bernstein and E. G. Gilbert, Optimal periodic control: The $\pi$ test revisited, IEEE Transactions on Automatic Control, 25 (1980), 673-684.  doi: 10.1109/TAC.1980.1102394.  Google Scholar

[6]

S. BittantiG. Fronza and G. Guardabassi, Periodic control: A frequency domain approach, IEEE Transactions on Automatic Control, 18 (1973), 33-38.  doi: 10.1109/tac.1973.1100225.  Google Scholar

[7]

S. BittantiA. Locatelli and C. Maffezzoni, Second-variation methods in periodic optimization, J. Optimization Theory and Appl., 14 (1974), 31-49.  doi: 10.1007/BF00933173.  Google Scholar

[8]

G. GuardabassiA. Locatelli and S. Rinaldi, Status of periodic optimization of dynamical systems, J. Optimization Theory and Appl., 14 (1974), 1-20.  doi: 10.1007/BF00933171.  Google Scholar

[9]

L. Cesari, Optimization-Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics (New York), 17. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[10]

C. W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation, Third edition, Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2010.  Google Scholar

[11]

R. T. EvansJ. L. Speyer and C.-H. Chuang, Solution of a periodic optimal control problem by asymptotic series, J. Optimization Theory and Appl., 52 (1987), 343-364.  doi: 10.1007/BF00938212.  Google Scholar

[12]

E. G. Gilbert, Optimal periodic control: A general theory of necessary conditions, SIAM J. Control Optim., 15 (1977), 717-746.  doi: 10.1137/0315046.  Google Scholar

[13]

J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2017.  Google Scholar

[14]

V. HatzimanikatisG. LyberatosS. Pavlou and S. A. Svoronos, A method for pulsed periodic optimization of chemical reaction systems, Chemical Engineering Science, 48 (1993), 789-797.  doi: 10.1016/0009-2509(93)80144-F.  Google Scholar

[15]

L. Idels, Stability analysis of periodic Fox production models, Can. Appl. Math. Q., 14 (2006), 331-341.   Google Scholar

[16]

L. Idels and M. Wang, Harvesting strategies with modified effort function, Intern. J. of Modelling, Identification and Control, Special Issue "Modeling Complex Systems" (IJMIC), 3 (2008), 83-87.   Google Scholar

[17]

C. Maffezzoni, Hamilton-Jacobi theory for periodic control problems, J. Optimization Theory and Appl., 14 (1974), 21-29.  doi: 10.1007/BF00933172.  Google Scholar

[18]

L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[19]

L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, Pergamon Press Book, The Macmillan Co., New York, 1964.  Google Scholar

[20]

J. L. Speyer and R. T. Evans, A second variation theory for optimal periodic processes, IEEE Transactions on Automatic Control, 29 (1984), 138-148.  doi: 10.1109/TAC.1984.1103482.  Google Scholar

[21]

Q. H. Wang and J. L. Speyer, Necessary and sufficient conditions for local optimality of a periodic process, SIAM J. Control Optim., 28 (1990), 482-497.  doi: 10.1137/0328027.  Google Scholar

Figure 1.  Functions $ \gamma = \psi\circ \ell^{-1} $ and $ \hat\gamma $ defined above
Figure 2.  $ T $-periodic solutions $ x(\cdot,u^-,\bar x) $ and $ x(\cdot,u^+,\bar x) $
Figure 3.  The solution $ \tilde x $ in thick line, $ x $ in thin line
Figure 4.  Optimal criterion $ J_{T}(\hat u_{T}) $ (left) and $ x_m $, $ x_M $ (right) as functions of the period $ T $ for the logistic growth
Figure 5.  Graphs of the functions $ h $ (left) and $ \psi $ (right) for $ r = 0.3 $, $ K = 5 $, $ \alpha = 2.5 $, $ E_{max} = 0.5893 $, $ E^\star = 0.6235 $
Figure 6.  Optimal criterion $ J_{T}(\hat u_{T}) $ (left) and $ x_m $, $ x_M $ (right) as functions of the period $ T $ for the depensation model (case 1)
Figure 7.  Plot of the function $ F $ defined by (22) (left), and $ x_m $, $ x_M $, $ x_T^- $, $ x_T^+ $ (right) as functions of the period $ T $ $ (T<6) $ for the depensation model (case 2)
Figure 8.  Optimal criterion $ J_{T}(\hat u_{T}) $ for the depensation model (case 2)
[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[5]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[9]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[10]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[11]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[12]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[13]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[18]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[19]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[20]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (141)
  • HTML views (401)
  • Cited by (1)

[Back to Top]