
-
Previous Article
A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices
- MCRF Home
- This Issue
-
Next Article
State-constrained semilinear elliptic optimization problems with unrestricted sparse controls
Optimal periodic control for scalar dynamics under integral constraint on the input
1. | Avignon Université, Laboratoire de Mathématiques d'Avignon (EA 2151) F-84018 Avignon, France., MISTEA, Univ Montpellier, INRA, Montpellier SupAgro, France |
2. | MISTEA, Univ Montpellier, INRA, Montpellier SupAgro, France |
This paper studies a periodic optimal control problem governed by a one-dimensional system, linear with respect to the control $ u $, under an integral constraint on $ u $. We give conditions for which the value of the cost function at steady state with a constant control $ \bar u $ can be improved by considering periodic control $ u $ with average value equal to $ \bar u $. This leads to the so-called "over-yielding" met in several applications. With the use of the Pontryagin Maximum Principle, we provide the optimal synthesis of periodic strategies under the integral constraint. The results are illustrated on a single population model in order to study the effect of periodic inputs on the utility of the stock of resource.
References:
[1] |
E.-M. Abulesz and G. Lyberatos,
Periodic impulse-forcing of nonlinear systems: A new method, International Journal of Control, 48 (1988), 469-480.
doi: 10.1080/00207178808906191. |
[2] |
E.-M. Abulesz and G. Lyberatos,
Periodic optimization of microbial growth processes, Biotechnology and Bioengineering, 29 (1987), 1059-1067.
doi: 10.1002/bit.260290904. |
[3] |
E. M. Abulesz and G. Lyberatos,
Periodic operation of a continuous culture of Baker's yeast, Biotechnology and Bioengineering, 34 (1989), 741-749.
doi: 10.1002/bit.260340603. |
[4] |
A. O. Belyakov and V. M. Veliov,
Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.
doi: 10.1051/mmnp/20149403. |
[5] |
D. S. Bernstein and E. G. Gilbert,
Optimal periodic control: The $\pi$ test revisited, IEEE Transactions on Automatic Control, 25 (1980), 673-684.
doi: 10.1109/TAC.1980.1102394. |
[6] |
S. Bittanti, G. Fronza and G. Guardabassi,
Periodic control: A frequency domain approach, IEEE Transactions on Automatic Control, 18 (1973), 33-38.
doi: 10.1109/tac.1973.1100225. |
[7] |
S. Bittanti, A. Locatelli and C. Maffezzoni,
Second-variation methods in periodic optimization, J. Optimization Theory and Appl., 14 (1974), 31-49.
doi: 10.1007/BF00933173. |
[8] |
G. Guardabassi, A. Locatelli and S. Rinaldi,
Status of periodic optimization of dynamical systems, J. Optimization Theory and Appl., 14 (1974), 1-20.
doi: 10.1007/BF00933171. |
[9] |
L. Cesari, Optimization-Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics (New York), 17. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5. |
[10] |
C. W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation, Third edition, Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2010. |
[11] |
R. T. Evans, J. L. Speyer and C.-H. Chuang,
Solution of a periodic optimal control problem by asymptotic series, J. Optimization Theory and Appl., 52 (1987), 343-364.
doi: 10.1007/BF00938212. |
[12] |
E. G. Gilbert,
Optimal periodic control: A general theory of necessary conditions, SIAM J. Control Optim., 15 (1977), 717-746.
doi: 10.1137/0315046. |
[13] |
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2017. |
[14] |
V. Hatzimanikatis, G. Lyberatos, S. Pavlou and S. A. Svoronos,
A method for pulsed periodic optimization of chemical reaction systems, Chemical Engineering Science, 48 (1993), 789-797.
doi: 10.1016/0009-2509(93)80144-F. |
[15] |
L. Idels,
Stability analysis of periodic Fox production models, Can. Appl. Math. Q., 14 (2006), 331-341.
|
[16] |
L. Idels and M. Wang, Harvesting strategies with modified effort function, Intern. J. of Modelling, Identification and Control, Special Issue "Modeling Complex Systems" (IJMIC), 3 (2008), 83-87. Google Scholar |
[17] |
C. Maffezzoni,
Hamilton-Jacobi theory for periodic control problems, J. Optimization Theory and Appl., 14 (1974), 21-29.
doi: 10.1007/BF00933172. |
[18] |
L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4684-0392-3. |
[19] |
L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, Pergamon Press Book, The Macmillan Co., New York, 1964. |
[20] |
J. L. Speyer and R. T. Evans,
A second variation theory for optimal periodic processes, IEEE Transactions on Automatic Control, 29 (1984), 138-148.
doi: 10.1109/TAC.1984.1103482. |
[21] |
Q. H. Wang and J. L. Speyer,
Necessary and sufficient conditions for local optimality of a periodic process, SIAM J. Control Optim., 28 (1990), 482-497.
doi: 10.1137/0328027. |
show all references
References:
[1] |
E.-M. Abulesz and G. Lyberatos,
Periodic impulse-forcing of nonlinear systems: A new method, International Journal of Control, 48 (1988), 469-480.
doi: 10.1080/00207178808906191. |
[2] |
E.-M. Abulesz and G. Lyberatos,
Periodic optimization of microbial growth processes, Biotechnology and Bioengineering, 29 (1987), 1059-1067.
doi: 10.1002/bit.260290904. |
[3] |
E. M. Abulesz and G. Lyberatos,
Periodic operation of a continuous culture of Baker's yeast, Biotechnology and Bioengineering, 34 (1989), 741-749.
doi: 10.1002/bit.260340603. |
[4] |
A. O. Belyakov and V. M. Veliov,
Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.
doi: 10.1051/mmnp/20149403. |
[5] |
D. S. Bernstein and E. G. Gilbert,
Optimal periodic control: The $\pi$ test revisited, IEEE Transactions on Automatic Control, 25 (1980), 673-684.
doi: 10.1109/TAC.1980.1102394. |
[6] |
S. Bittanti, G. Fronza and G. Guardabassi,
Periodic control: A frequency domain approach, IEEE Transactions on Automatic Control, 18 (1973), 33-38.
doi: 10.1109/tac.1973.1100225. |
[7] |
S. Bittanti, A. Locatelli and C. Maffezzoni,
Second-variation methods in periodic optimization, J. Optimization Theory and Appl., 14 (1974), 31-49.
doi: 10.1007/BF00933173. |
[8] |
G. Guardabassi, A. Locatelli and S. Rinaldi,
Status of periodic optimization of dynamical systems, J. Optimization Theory and Appl., 14 (1974), 1-20.
doi: 10.1007/BF00933171. |
[9] |
L. Cesari, Optimization-Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics (New York), 17. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5. |
[10] |
C. W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation, Third edition, Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2010. |
[11] |
R. T. Evans, J. L. Speyer and C.-H. Chuang,
Solution of a periodic optimal control problem by asymptotic series, J. Optimization Theory and Appl., 52 (1987), 343-364.
doi: 10.1007/BF00938212. |
[12] |
E. G. Gilbert,
Optimal periodic control: A general theory of necessary conditions, SIAM J. Control Optim., 15 (1977), 717-746.
doi: 10.1137/0315046. |
[13] |
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2017. |
[14] |
V. Hatzimanikatis, G. Lyberatos, S. Pavlou and S. A. Svoronos,
A method for pulsed periodic optimization of chemical reaction systems, Chemical Engineering Science, 48 (1993), 789-797.
doi: 10.1016/0009-2509(93)80144-F. |
[15] |
L. Idels,
Stability analysis of periodic Fox production models, Can. Appl. Math. Q., 14 (2006), 331-341.
|
[16] |
L. Idels and M. Wang, Harvesting strategies with modified effort function, Intern. J. of Modelling, Identification and Control, Special Issue "Modeling Complex Systems" (IJMIC), 3 (2008), 83-87. Google Scholar |
[17] |
C. Maffezzoni,
Hamilton-Jacobi theory for periodic control problems, J. Optimization Theory and Appl., 14 (1974), 21-29.
doi: 10.1007/BF00933172. |
[18] |
L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4684-0392-3. |
[19] |
L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, Pergamon Press Book, The Macmillan Co., New York, 1964. |
[20] |
J. L. Speyer and R. T. Evans,
A second variation theory for optimal periodic processes, IEEE Transactions on Automatic Control, 29 (1984), 138-148.
doi: 10.1109/TAC.1984.1103482. |
[21] |
Q. H. Wang and J. L. Speyer,
Necessary and sufficient conditions for local optimality of a periodic process, SIAM J. Control Optim., 28 (1990), 482-497.
doi: 10.1137/0328027. |





[1] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[2] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[3] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[4] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[5] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[6] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[7] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[9] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[10] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[11] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[12] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[13] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[14] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[15] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[16] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[17] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[18] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[19] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[20] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]