[1]
|
A. A. Ahmadi, R. M. Jungers, P. A. Parrilo and M. Roozbehani, Joint spectral radius and path-complete graph Lyapunov functions, SIAM J. Control and Optimization, 52 (2014), 687-717.
doi: 10.1137/110855272.
|
[2]
|
M. Akian, S. Gaubert and A. Guterman, Tropical polyhedra are equivalent to mean payoff games, International Journal of Algebra and Computation, 22 (2012), 125001, 43 pp.
doi: 10.1142/S0218196711006674.
|
[3]
|
M. Akian, S. Gaubert, J. Grand-Clément and J. Guillaud, The operator approach to entropy games, Theor. Comp. Sys., 63 (2019), 1089-1130.
doi: 10.1007/s00224-019-09925-z.
|
[4]
|
M. Akian, S. Gaubert and A. Hochart, Generic uniqueness of the bias vector of finite stochastic games with perfect information, Journal of Mathematical Analysis and Applications, 457 (2018), 1038-1064.
doi: 10.1016/j.jmaa.2017.07.017.
|
[5]
|
M. Akian, S. Gaubert and R. Nussbaum, A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, (2011), arXiv: 1112.5968.
|
[6]
|
M. Akian, S. Gaubert and R. Nussbaum, Uniqueness of the fixed point of nonexpansive semidifferentiable maps, Trans. Amer. Math. Soc., 368 (2016), 1271-1320.
doi: 10.1090/S0002-9947-2015-06413-7.
|
[7]
|
V. Anantharam and V. S. Borkar, A variational formula for risk-sensitive reward, arXiv: 1501.00676.
|
[8]
|
E. Asarin, J. Cervelle, A. Degorre, C. Dima, F. Horn and V. Kozyakin, Entropy games and matrix multiplication games, 33rd Symposium on Theoretical Aspects of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl, Leibniz-Zent. Inform., Wadern, (2016), Art. No. 11, 14 pp.
|
[9]
|
J.-B. Baillon and R. E. Bruck, Optimal rates of asymptotic regularity for averaged nonexpansive mappings, Fixed Point Theory and Applications (Halifax, NS, 1991), World Sci. Publ., River Edge, NJ, (1992), 27–66.
|
[10]
|
N. E. Barabanov, Lyapunov indicator for discrete inclusions. I, Autom. Remote Control, 49 (1988), 152-157.
|
[11]
|
V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal., 31 (2009), 865-876.
doi: 10.1137/080723764.
|
[12]
|
O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellman equations, J. Sci. Compt., 30 (2007), 1-33.
doi: 10.1007/s10915-005-9017-0.
|
[13]
|
P. J. Bushell, Hilbert's metric and positive contraction mappings in a banach space, Archive for Rational Mechanics and Analysis, 52 (1973), 330-338.
doi: 10.1007/BF00247467.
|
[14]
|
I. Capuzzo Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming, Appl. Math. Optim., 10 (1983), 367-377.
doi: 10.1007/BF01448394.
|
[15]
|
E. Carlini, M. Falcone and R. Ferretti, An efficient algorithm for Hamilton-Jacobi equations in high dimension, Comput. Vis. Sci., 7 (2004), 15-29.
doi: 10.1007/s00791-004-0124-5.
|
[16]
|
R. Cominetti, J. A. Soto and J. Vaisman, On the rate of convergence of Krasnosel'skii-Mann iterations and their connection with sums of Bernoullis, Israel Journal of Mathematics, 199 (2014), 757-772.
doi: 10.1007/s11856-013-0045-4.
|
[17]
|
M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43 (1894), 1-19.
doi: 10.1090/S0025-5718-1984-0744921-8.
|
[18]
|
M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc., 17 (1978), 547-554.
doi: 10.1112/jlms/s2-17.3.547.
|
[19]
|
M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), 315-344.
doi: 10.1007/s002110050031.
|
[20]
|
S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), 738-749.
doi: 10.1016/j.laa.2011.02.042.
|
[21]
|
S. Gaubert and J. Gunawardena, The Perron-Frobenius theorem for homogeneous, monotone functions, Trans. Amer. Math. Soc., 356 (2004), 4931-4950.
doi: 10.1090/S0002-9947-04-03470-1.
|
[22]
|
S. Gaubert, W. McEneaney and Z. Qu, Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms, Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, (2011), 1054–1061.
doi: 10.1109/CDC.2011.6161386.
|
[23]
|
S. Gaubert and N. Stott, Tropical Kraus maps for optimal control of switched systems, 56th IEEE Conference on Decision and Control, CC 2017, Melbourne, Australia, (2017).
doi: 10.1109/CDC.2017.8263839.
|
[24]
|
S. Gaubert and G. Vigeral, A maximin characterization of the escape rate of nonexpansive mappings in metrically convex spaces, Math. Proc. of Cambridge Phil. Soc., 152 (2012), 341-363.
doi: 10.1017/S0305004111000673.
|
[25]
|
N. Guglielmi and V. Protasov, Exact computation of joint spectral characteristics of linear operators, Foundations of Computational Mathematics, 13 (2013), 37-97.
doi: 10.1007/s10208-012-9121-0.
|
[26]
|
N. Guglielmi and M. Zennaro, Stability of linear problems: Joint spectral radius of sets of matrices, Current Challenges in Stability Issues for Numerical Differential Equations, Lecture Notes in Math., Fond. CIME/CIME Found. Subser., Springer, Cham, 2082 (2014), 265-313.
doi: 10.1007/978-3-319-01300-8_5.
|
[27]
|
S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proceedings of the American Mathematical Society, 59 (1976), 65-71.
doi: 10.1090/S0002-9939-1976-0412909-X.
|
[28]
|
R. Jungers, Classical results and problems, Springer Berlin Heidelberg, Berlin, Heidelberg, (2009), 23–46.
|
[29]
|
R. Jungers, The Joint Spectral Radius. Theory and Applications, Lecture Notes in Control and Information Sciences, 385. Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-95980-9.
|
[30]
|
V. Kozyakin, Iterative building of barabanov norms and computation of the joint spectral radius for matrix sets, Discrete and Continuous Dynamical Systems Series-B, 14 (2010), 143-158.
doi: 10.3934/dcdsb.2010.14.143.
|
[31]
|
M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, Two remarks on the method of successive approximations, Uspekhi Matematicheskikh Nauk, 10 (1955), 123-127.
|
[32]
|
B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory, Cambridge Tracts in Mathematics, 189. Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139026079.
|
[33]
|
J. Mallet-Paret and R. D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete and Continuous Dynamical Systems, 8 (2002), 519-562.
doi: 10.3934/dcds.2002.8.519.
|
[34]
|
W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Society, 4 (1953), 506-510.
doi: 10.1090/S0002-9939-1953-0054846-3.
|
[35]
|
W. M. McEneaney, A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs, SIAM Journal on Control and Optimization, 46 (2007), 1239-1276.
doi: 10.1137/040610830.
|
[36]
|
W. M. McEneaney and L. J. Kluberg, Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs, SIAM J. Control Optim., 48 (2009/10), 3052-3079.
doi: 10.1137/070681934.
|
[37]
|
R. D. Nussbaum, Convexity and log convexity for the spectral radius, Linear Algebra Appl., 73 (1986), 59-122.
doi: 10.1016/0024-3795(86)90233-8.
|
[38]
|
R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc., 75 (1988).
doi: 10.1090/memo/0391.
|
[39]
|
A. Papadopoulos and M. Troyanov, Weak Finsler structures and the Funk weak metric, Math. Proc. Cambridge Philos. Soc., 147 (2009), 419-437.
doi: 10.1017/S0305004109002461.
|
[40]
|
M. Philippe, R. Essick, G. E. Dullerud and R. M. Jungers, Stability of discrete-time switching systems with constrained switching sequences, Automatica J. IFAC, 72 (2016), 242-250.
doi: 10.1016/j.automatica.2016.05.015.
|
[41]
|
V. Y. Protasov, Spectral simplex method, Mathematical Programming, 156 (2016), 485-511.
doi: 10.1007/s10107-015-0905-2.
|
[42]
|
Z. Qu, Contraction of Riccati flows applied to the convergence analysis of a max-plus curse-of-dimensionality-free method, SIAM Journal on Control and Optimization, 52 (2014), 2677-2706.
doi: 10.1137/130906702.
|
[43]
|
N. Stott, Minimal Upper Bounds in the Löwner Order and Application to Invariant Computation for Switched Systems, Phd thesis, Université Paris-Saclay, École polytechnique, 2017.
|