• Previous Article
    Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component
  • MCRF Home
  • This Issue
  • Next Article
    Optimal control of the linear wave equation by time-depending BV-controls: A semi-smooth Newton approach
September  2020, 10(3): 623-642. doi: 10.3934/mcrf.2020013

Controllability of a system of degenerate parabolic equations with non-diagonalizable diffusion matrix

Département de Mathématiques, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, Marrakech, 40000, B.P 2390, Morocco

* Corresponding author: fadilimed@live.fr

Received  October 2018 Revised  May 2019 Published  December 2019

In this paper we study the null controllability of some non diagonalizable degenerate parabolic systems of PDEs, we assume that the diffusion, coupling and controls matrices are constant and we characterize the null controllability by an algebraic condition so called Kalman's rank condition.

Citation: El Mustapha Ait Ben Hassi, Mohamed Fadili, Lahcen Maniar. Controllability of a system of degenerate parabolic equations with non-diagonalizable diffusion matrix. Mathematical Control & Related Fields, 2020, 10 (3) : 623-642. doi: 10.3934/mcrf.2020013
References:
[1]

E. M. Ait Ben HassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems, Portugal. Math., 68 (2011), 345-367.  doi: 10.4171/PM/1895.  Google Scholar

[2]

E. M. Ait Ben HassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.  doi: 10.3934/eect.2013.2.441.  Google Scholar

[3]

E. M. Ait Ben HassiM. Fadili and L. Maniar, On algebraic condition for null controllability of some coupled degenerate systems, Mathematical Control and Related Fields, 9 (2019), 77-95.  doi: 10.3934/mcrf.2019004.  Google Scholar

[4]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with application to null controlability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[5]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[6]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Diff. Equ. Appl., 1 (2009), 427-457.  doi: 10.7153/dea-01-24.  Google Scholar

[7]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[8]

F. Ammar KhodjaA. Benabdellah and C. Dupaix, Null-controllability for some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943.  doi: 10.1016/j.jmaa.2005.07.060.  Google Scholar

[9]

M. CampitiG. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36.  doi: 10.1007/PL00005959.  Google Scholar

[10]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electronic Journal of Differential Equations, 2006 (2006), 20 pp.   Google Scholar

[11]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.   Google Scholar

[12]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.  doi: 10.1137/04062062X.  Google Scholar

[13]

P. CannarsaP. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Memoirs of the American Mathematical Society, 239 (2016).  doi: 10.1090/memo/1133.  Google Scholar

[14]

P. Cannarsa and L. de Teresa, Controllability of 1-D coupled degenerate parabolic equations, Electronic Journal of Differential Equations, 2009 (2009), 21 pp.   Google Scholar

[15]

M. Fadili and L. Maniar, Null controllability of $n$-coupled degenerate parabolic systems with $m$-controls, J. Evol. Equ., 17 (2017), 1311-1340.  doi: 10.1007/s00028-017-0385-3.  Google Scholar

[16]

E. Fernandez-CaraM. Gonzalez-Burgos and L. de Teresa, Controllability of linear and semilinear non-diagonalizable parabolic systems, ESAIM Control Optim. Calc. Var., 21 (2015), 1178-1204.  doi: 10.1051/cocv/2014063.  Google Scholar

[17]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[18]

M. Gonzalez-Burgos and L. de Teresa, Controllability results for cascade systems of m-coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[19]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.  Google Scholar

[20]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. in PDE, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.  Google Scholar

[21]

R. D. Meyer, Degenerate elliptic differential systems, J. Math. Anal. Appl., 29 (1970), 436-442.  doi: 10.1016/0022-247X(70)90093-4.  Google Scholar

[22]

L. A. F. de Oliveira, On reaction-diffusion systems, Electron. J. Differential Equations, 1998 (1998), 10 pp.   Google Scholar

[23]

J. Zabczyk, Mathematical Control Theory. An Introduction, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

[24]

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109-129.  doi: 10.1016/S0294-1449(16)30221-9.  Google Scholar

show all references

References:
[1]

E. M. Ait Ben HassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems, Portugal. Math., 68 (2011), 345-367.  doi: 10.4171/PM/1895.  Google Scholar

[2]

E. M. Ait Ben HassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.  doi: 10.3934/eect.2013.2.441.  Google Scholar

[3]

E. M. Ait Ben HassiM. Fadili and L. Maniar, On algebraic condition for null controllability of some coupled degenerate systems, Mathematical Control and Related Fields, 9 (2019), 77-95.  doi: 10.3934/mcrf.2019004.  Google Scholar

[4]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with application to null controlability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[5]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[6]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Diff. Equ. Appl., 1 (2009), 427-457.  doi: 10.7153/dea-01-24.  Google Scholar

[7]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[8]

F. Ammar KhodjaA. Benabdellah and C. Dupaix, Null-controllability for some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943.  doi: 10.1016/j.jmaa.2005.07.060.  Google Scholar

[9]

M. CampitiG. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36.  doi: 10.1007/PL00005959.  Google Scholar

[10]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electronic Journal of Differential Equations, 2006 (2006), 20 pp.   Google Scholar

[11]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.   Google Scholar

[12]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.  doi: 10.1137/04062062X.  Google Scholar

[13]

P. CannarsaP. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Memoirs of the American Mathematical Society, 239 (2016).  doi: 10.1090/memo/1133.  Google Scholar

[14]

P. Cannarsa and L. de Teresa, Controllability of 1-D coupled degenerate parabolic equations, Electronic Journal of Differential Equations, 2009 (2009), 21 pp.   Google Scholar

[15]

M. Fadili and L. Maniar, Null controllability of $n$-coupled degenerate parabolic systems with $m$-controls, J. Evol. Equ., 17 (2017), 1311-1340.  doi: 10.1007/s00028-017-0385-3.  Google Scholar

[16]

E. Fernandez-CaraM. Gonzalez-Burgos and L. de Teresa, Controllability of linear and semilinear non-diagonalizable parabolic systems, ESAIM Control Optim. Calc. Var., 21 (2015), 1178-1204.  doi: 10.1051/cocv/2014063.  Google Scholar

[17]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[18]

M. Gonzalez-Burgos and L. de Teresa, Controllability results for cascade systems of m-coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[19]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.  Google Scholar

[20]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. in PDE, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.  Google Scholar

[21]

R. D. Meyer, Degenerate elliptic differential systems, J. Math. Anal. Appl., 29 (1970), 436-442.  doi: 10.1016/0022-247X(70)90093-4.  Google Scholar

[22]

L. A. F. de Oliveira, On reaction-diffusion systems, Electron. J. Differential Equations, 1998 (1998), 10 pp.   Google Scholar

[23]

J. Zabczyk, Mathematical Control Theory. An Introduction, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

[24]

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109-129.  doi: 10.1016/S0294-1449(16)30221-9.  Google Scholar

[1]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[8]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[9]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[10]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[11]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (216)
  • HTML views (339)
  • Cited by (0)

[Back to Top]