September  2020, 10(3): 643-667. doi: 10.3934/mcrf.2020014

Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component

1. 

Faculté des Sciences et Techniques, Université Hassan 1er, Laboratoire MISI, B.P. 577, Settat 26000, Morocco

2. 

Département de Mathématiques, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, Marrakech 40000, B.P. 2390, Morocco

* Corresponding author: Jawad Salhi

Received  November 2018 Revised  July 2019 Published  December 2019

This article presents an inverse source problem for a cascade system of $ n $ coupled degenerate parabolic equations. In particular, we prove stability and uniqueness results for the inverse problem of determining the source terms by observations in an arbitrary subdomain over a time interval of only one component and data of the $ n $ components at a fixed positive time $ T' $ over the whole spatial domain. The proof is based on the application of a Carleman estimate with a single observation acting on a subdomain.

Citation: Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component. Mathematical Control & Related Fields, 2020, 10 (3) : 643-667. doi: 10.3934/mcrf.2020014
References:
[1]

B. AinsebaM. Bendahmane and Y. He, Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology, Netw. Heterog. Media, 10 (2015), 369-385.  doi: 10.3934/nhm.2015.10.369.  Google Scholar

[2]

E. M. Ait Ben HassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.  doi: 10.3934/eect.2013.2.441.  Google Scholar

[3]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[4]

F. Alabau-BoussouiraP. Cannarsa and M. Yamamoto, Source reconstruction by partial measurements for a class of hyperbolic systems in cascade, Mathematical paradigms of climate science, Springer INdAM Ser., Springer, [Cham], 15 (2016), 35-50.   Google Scholar

[5]

M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer Monographs in Mathematics, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.  Google Scholar

[6]

M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the thermoelasticity system, Inverse Problems, 27 (2011), 015006, 18 pp. doi: 10.1088/0266-5611/27/1/015006.  Google Scholar

[7]

A. BenabdallahM. CristofolP. Gaitan and M. Yamamoto, Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., 88 (2009), 683-709.  doi: 10.1080/00036810802555490.  Google Scholar

[8]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite-Dimensional Systems. Vol. 1, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.  Google Scholar

[9]

I. BoutaayamouG. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Inverse III-Posed Probl, 24 (2016), 275-292.  doi: 10.1515/jiip-2014-0032.  Google Scholar

[10]

I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, 2014 (2014), 26 pp.  Google Scholar

[11]

I. Boutaayamou, A. Hajjaj and L. Maniar, Lipschitz stability for degenerate parabolic systems, Electron. J. Differential Equations, 2014 (2014), 15 pp.  Google Scholar

[12]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of a class of multidimensional inverse problems, Soviet Math. Dokl., 24 (1981), 244-247.   Google Scholar

[13]

M. CampitiG. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36.  doi: 10.1007/PL00005959.  Google Scholar

[14]

P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., 239 (2016). doi: 10.1090/memo/1133.  Google Scholar

[15]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp. doi: 10.1088/0266-5611/26/10/105003.  Google Scholar

[16]

M. CristofolP. GaitanK. Niinimäki and O. Poisson, Inverse problem for a coupled parabolic system with discontinuous conductivities: One-dimensional case, Inverse Problems and Imaging, 7 (2013), 159-182.  doi: 10.3934/ipi.2013.7.159.  Google Scholar

[17]

M. CristofolP. Gaitan and H. Ramoul, Inverse problems for a $2\times2$ reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.  doi: 10.1088/0266-5611/22/5/003.  Google Scholar

[18]

M. CristofolP. GaitanH. Ramoul and M. Yamamoto, Identification of two independent coefficients with one observation for a nonlinear parabolic system, Appl. Anal., 91 (2012), 2073-2081.  doi: 10.1080/00036811.2011.583240.  Google Scholar

[19]

V. DinakarN. B. Balan and K. Balachandran, Identification of source terms in a coupled age-structured population model with discontinuous diffusion coefficients, AIMS Mathematics, 2 (2017), 81-95.  doi: 10.3934/Math.2017.1.81.  Google Scholar

[20]

M. Fadili and L. Maniar, Null controllability of $n$-coupled degenerate parabolic systems with $m$-controls, J. Evol. Equ., 17 (2017), 1311-1340.  doi: 10.1007/s00028-017-0385-3.  Google Scholar

[21]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[22]

M. Gonzalez-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[23]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problem by Carleman estimates, Inverse Problems, 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[24]

L. Roques and M. Cristofol, The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system, Inverse Problems, 28 (2012), 075007, 12 pp. doi: 10.1088/0266-5611/28/7/075007.  Google Scholar

[25]

J. Tort, An inverse diffusion problem in a degenerate parabolic equation, Monografias, Real Academia de Ciencias de Zaragoza, 38 (2012), 137-145.   Google Scholar

[26]

J. Tort and J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 683-713.  doi: 10.1016/j.anihpc.2012.03.003.  Google Scholar

[27]

J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Communications in Partial Differential Equations, 36 (2011), 1287-1317.  doi: 10.1080/03605302.2011.587491.  Google Scholar

[28]

B. Wu and J. Yu, Hölder stability of an inverse problem for a strongly coupled reaction-diffusion system, IMA J. Appl. Math., 82 (2017), 424-444.  doi: 10.1093/imamat/hxw058.  Google Scholar

[29]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013, 75 pp. doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

show all references

References:
[1]

B. AinsebaM. Bendahmane and Y. He, Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology, Netw. Heterog. Media, 10 (2015), 369-385.  doi: 10.3934/nhm.2015.10.369.  Google Scholar

[2]

E. M. Ait Ben HassiF. Ammar KhodjaA. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.  doi: 10.3934/eect.2013.2.441.  Google Scholar

[3]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[4]

F. Alabau-BoussouiraP. Cannarsa and M. Yamamoto, Source reconstruction by partial measurements for a class of hyperbolic systems in cascade, Mathematical paradigms of climate science, Springer INdAM Ser., Springer, [Cham], 15 (2016), 35-50.   Google Scholar

[5]

M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer Monographs in Mathematics, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.  Google Scholar

[6]

M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the thermoelasticity system, Inverse Problems, 27 (2011), 015006, 18 pp. doi: 10.1088/0266-5611/27/1/015006.  Google Scholar

[7]

A. BenabdallahM. CristofolP. Gaitan and M. Yamamoto, Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., 88 (2009), 683-709.  doi: 10.1080/00036810802555490.  Google Scholar

[8]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite-Dimensional Systems. Vol. 1, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.  Google Scholar

[9]

I. BoutaayamouG. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Inverse III-Posed Probl, 24 (2016), 275-292.  doi: 10.1515/jiip-2014-0032.  Google Scholar

[10]

I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, 2014 (2014), 26 pp.  Google Scholar

[11]

I. Boutaayamou, A. Hajjaj and L. Maniar, Lipschitz stability for degenerate parabolic systems, Electron. J. Differential Equations, 2014 (2014), 15 pp.  Google Scholar

[12]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of a class of multidimensional inverse problems, Soviet Math. Dokl., 24 (1981), 244-247.   Google Scholar

[13]

M. CampitiG. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36.  doi: 10.1007/PL00005959.  Google Scholar

[14]

P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., 239 (2016). doi: 10.1090/memo/1133.  Google Scholar

[15]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp. doi: 10.1088/0266-5611/26/10/105003.  Google Scholar

[16]

M. CristofolP. GaitanK. Niinimäki and O. Poisson, Inverse problem for a coupled parabolic system with discontinuous conductivities: One-dimensional case, Inverse Problems and Imaging, 7 (2013), 159-182.  doi: 10.3934/ipi.2013.7.159.  Google Scholar

[17]

M. CristofolP. Gaitan and H. Ramoul, Inverse problems for a $2\times2$ reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.  doi: 10.1088/0266-5611/22/5/003.  Google Scholar

[18]

M. CristofolP. GaitanH. Ramoul and M. Yamamoto, Identification of two independent coefficients with one observation for a nonlinear parabolic system, Appl. Anal., 91 (2012), 2073-2081.  doi: 10.1080/00036811.2011.583240.  Google Scholar

[19]

V. DinakarN. B. Balan and K. Balachandran, Identification of source terms in a coupled age-structured population model with discontinuous diffusion coefficients, AIMS Mathematics, 2 (2017), 81-95.  doi: 10.3934/Math.2017.1.81.  Google Scholar

[20]

M. Fadili and L. Maniar, Null controllability of $n$-coupled degenerate parabolic systems with $m$-controls, J. Evol. Equ., 17 (2017), 1311-1340.  doi: 10.1007/s00028-017-0385-3.  Google Scholar

[21]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[22]

M. Gonzalez-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[23]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problem by Carleman estimates, Inverse Problems, 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[24]

L. Roques and M. Cristofol, The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system, Inverse Problems, 28 (2012), 075007, 12 pp. doi: 10.1088/0266-5611/28/7/075007.  Google Scholar

[25]

J. Tort, An inverse diffusion problem in a degenerate parabolic equation, Monografias, Real Academia de Ciencias de Zaragoza, 38 (2012), 137-145.   Google Scholar

[26]

J. Tort and J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 683-713.  doi: 10.1016/j.anihpc.2012.03.003.  Google Scholar

[27]

J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Communications in Partial Differential Equations, 36 (2011), 1287-1317.  doi: 10.1080/03605302.2011.587491.  Google Scholar

[28]

B. Wu and J. Yu, Hölder stability of an inverse problem for a strongly coupled reaction-diffusion system, IMA J. Appl. Math., 82 (2017), 424-444.  doi: 10.1093/imamat/hxw058.  Google Scholar

[29]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013, 75 pp. doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[3]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[6]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[11]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[16]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[17]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (177)
  • HTML views (453)
  • Cited by (0)

[Back to Top]