December  2020, 10(4): 669-698. doi: 10.3934/mcrf.2020015

Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations

Université Cadi Ayyad, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD- UPMC), Marrakech 40000, B.P. 2390, Maroc

* Corresponding author: Abdeladim El Akri

The first author would like to thank S. Micu for fruitful discussions on several parts of this paper during his visit to Craiova University

Received  January 2019 Revised  October 2019 Published  December 2019

In this paper, we treat the problem of uniform exact boundary controllability for the finite-difference space semi-discretization of the $ 1 $-$ d $ coupled wave equations with a control acting only in one equation. First, we show how, after filtering the high frequencies of the discrete initial data in an appropriate way, we can construct a sequence of uniformly (with respect to the mesh size) bounded controls. Thus, we prove that the weak limit of the aforementioned sequence is a control for the continuous system. The proof of our results is based on the moment method and on the construction of an explicit biorthogonal sequence.

Citation: Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control & Related Fields, 2020, 10 (4) : 669-698. doi: 10.3934/mcrf.2020015
References:
[1]

F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., 42 (2003), 871-906.  doi: 10.1137/S0363012902402608.  Google Scholar

[2]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., 99 (2013), 544-576.  doi: 10.1016/j.matpur.2012.09.012.  Google Scholar

[3]

D. S. Almeida JúniorA. J. A. Ramos and M. L. Santos, Observability inequality for the finite-difference semi-discretization of the 1-d coupled wave equations, Adv. Comput. Math., 41 (2015), 105-130.  doi: 10.1007/s10444-014-9351-6.  Google Scholar

[4]

S. AvdoninA. Choque Rivero and L. de Teresa, Exact boundary controllability of coupled hyperbolic equations, Int. J. Appl. Math. Comput. Sci., 23 (2013), 701-709.  doi: 10.2478/amcs-2013-0052.  Google Scholar

[5]

H. BouslousH. El Boujaoui and L. Maniar, Uniform boundary stabilization for the finite difference semi-discretization of 2-D wave equation, Afr. Mat., 25 (2014), 623-643.  doi: 10.1007/s13370-013-0141-y.  Google Scholar

[6]

I. F. BugariuS. Micu and I. Rovenţa, Approximation of the controls for the beam equation with vanishing viscosity, Math. Comp., 85 (2016), 2259-2303.  doi: 10.1090/mcom/3064.  Google Scholar

[7]

C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.  doi: 10.1007/s00211-005-0651-0.  Google Scholar

[8]

A. El Akri and L. Maniar, Indirect boundary observability of semi-discrete coupled wave equations, Electron. J. Differential Equations, 2018 (2018), 27 pp.  Google Scholar

[9]

H. El BoujaouiH. Bouslous and L. Maniar, Uniform boundary stabilization for the finite difference discretization of the 1-D wave equation, Afr. Mat., 27 (2016), 1239-1262.  doi: 10.1007/s13370-016-0406-3.  Google Scholar

[10]

S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-5808-1.  Google Scholar

[11]

H. O. Fattorini, Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, New Trends in Systems Analysis, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 2 (1977), 111-124.   Google Scholar

[12]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43 (1971), 272-292.  doi: 10.1007/BF00250466.  Google Scholar

[13]

R. Glowinski and C. H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 135-142.   Google Scholar

[14]

R. GlowinskiC. H. Li and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation I: Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.  doi: 10.1007/BF03167891.  Google Scholar

[15]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[16]

J. A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation, Math. Model. Num. Ann., 33 (1999), 407-438.  doi: 10.1051/m2an:1999123.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte Perturbations et Stabilisation de Systémes Distribués, Tome 1: Contrôlabilité Exacte, Recherches en Mathématiques Appliquées, 9. Masson, Paris, 1988. Google Scholar

[18]

P. Lissy, Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory, Math. Control Relat. Fields, 7 (2017), 21-40.  doi: 10.3934/mcrf.2017002.  Google Scholar

[19]

P. Lissy and I. Rovenţa, Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation, Math. Comp., 88 (2019), 273-291.  doi: 10.1090/mcom/3345.  Google Scholar

[20]

S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., 91 (2002), 723-768.  doi: 10.1007/s002110100338.  Google Scholar

[21]

S. Micu, Uniform boundary controllability of a semidiscrete 1-D wave equation with vanishing viscosity, SIAM J. Control Optim., 47 (2008), 2857-2885.  doi: 10.1137/070696933.  Google Scholar

[22]

S. Micu, I. Rovenţa and L. E. Temereancǎ, Approximation of the controls for the linear beam equation, Math. Control Signals Syst., 28 (2016), Art. 12, 53 pp. doi: 10.1007/s00498-016-0161-x.  Google Scholar

[23]

W. Rudin, Real and Complex Analysis, Second edition, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[24]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, 2nd edition, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[25]

L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the $1-d$ wave equation, Adv Comput. Math., 26 (2007), 337-365.  doi: 10.1007/s10444-004-7629-9.  Google Scholar

[26] R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics, 93. Academic Press, Inc., New York-London, 1980.   Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., 42 (2003), 871-906.  doi: 10.1137/S0363012902402608.  Google Scholar

[2]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., 99 (2013), 544-576.  doi: 10.1016/j.matpur.2012.09.012.  Google Scholar

[3]

D. S. Almeida JúniorA. J. A. Ramos and M. L. Santos, Observability inequality for the finite-difference semi-discretization of the 1-d coupled wave equations, Adv. Comput. Math., 41 (2015), 105-130.  doi: 10.1007/s10444-014-9351-6.  Google Scholar

[4]

S. AvdoninA. Choque Rivero and L. de Teresa, Exact boundary controllability of coupled hyperbolic equations, Int. J. Appl. Math. Comput. Sci., 23 (2013), 701-709.  doi: 10.2478/amcs-2013-0052.  Google Scholar

[5]

H. BouslousH. El Boujaoui and L. Maniar, Uniform boundary stabilization for the finite difference semi-discretization of 2-D wave equation, Afr. Mat., 25 (2014), 623-643.  doi: 10.1007/s13370-013-0141-y.  Google Scholar

[6]

I. F. BugariuS. Micu and I. Rovenţa, Approximation of the controls for the beam equation with vanishing viscosity, Math. Comp., 85 (2016), 2259-2303.  doi: 10.1090/mcom/3064.  Google Scholar

[7]

C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.  doi: 10.1007/s00211-005-0651-0.  Google Scholar

[8]

A. El Akri and L. Maniar, Indirect boundary observability of semi-discrete coupled wave equations, Electron. J. Differential Equations, 2018 (2018), 27 pp.  Google Scholar

[9]

H. El BoujaouiH. Bouslous and L. Maniar, Uniform boundary stabilization for the finite difference discretization of the 1-D wave equation, Afr. Mat., 27 (2016), 1239-1262.  doi: 10.1007/s13370-016-0406-3.  Google Scholar

[10]

S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-5808-1.  Google Scholar

[11]

H. O. Fattorini, Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, New Trends in Systems Analysis, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 2 (1977), 111-124.   Google Scholar

[12]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43 (1971), 272-292.  doi: 10.1007/BF00250466.  Google Scholar

[13]

R. Glowinski and C. H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 135-142.   Google Scholar

[14]

R. GlowinskiC. H. Li and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation I: Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.  doi: 10.1007/BF03167891.  Google Scholar

[15]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[16]

J. A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation, Math. Model. Num. Ann., 33 (1999), 407-438.  doi: 10.1051/m2an:1999123.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte Perturbations et Stabilisation de Systémes Distribués, Tome 1: Contrôlabilité Exacte, Recherches en Mathématiques Appliquées, 9. Masson, Paris, 1988. Google Scholar

[18]

P. Lissy, Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory, Math. Control Relat. Fields, 7 (2017), 21-40.  doi: 10.3934/mcrf.2017002.  Google Scholar

[19]

P. Lissy and I. Rovenţa, Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation, Math. Comp., 88 (2019), 273-291.  doi: 10.1090/mcom/3345.  Google Scholar

[20]

S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., 91 (2002), 723-768.  doi: 10.1007/s002110100338.  Google Scholar

[21]

S. Micu, Uniform boundary controllability of a semidiscrete 1-D wave equation with vanishing viscosity, SIAM J. Control Optim., 47 (2008), 2857-2885.  doi: 10.1137/070696933.  Google Scholar

[22]

S. Micu, I. Rovenţa and L. E. Temereancǎ, Approximation of the controls for the linear beam equation, Math. Control Signals Syst., 28 (2016), Art. 12, 53 pp. doi: 10.1007/s00498-016-0161-x.  Google Scholar

[23]

W. Rudin, Real and Complex Analysis, Second edition, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[24]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, 2nd edition, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[25]

L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the $1-d$ wave equation, Adv Comput. Math., 26 (2007), 337-365.  doi: 10.1007/s10444-004-7629-9.  Google Scholar

[26] R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics, 93. Academic Press, Inc., New York-London, 1980.   Google Scholar
[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-riemannian einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[16]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[17]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[20]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (176)
  • HTML views (435)
  • Cited by (0)

Other articles
by authors

[Back to Top]