• Previous Article
    Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations
  • MCRF Home
  • This Issue
  • Next Article
    Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations
December  2020, 10(4): 699-714. doi: 10.3934/mcrf.2020016

The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds

Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 El Manar II, Tunisia, LR LAMMDA, (LR16ES13), ESSTHS, Tunisia

* Corresponding author: Imen El Khal El Taief

Received  June 2019 Revised  October 2019 Published  December 2020 Early access  December 2019

We establish Strichartz estimates for the regularized Schrödinger equation on a two dimensional compact Riemannian manifold without boundary. As a consequence we deduce global existence and uniqueness results for the Cauchy problem for the nonlinear regularized Schrödinger equation and we prove under the geometric control condition the Kato smoothing effect for solutions of this equation in this particular geometries.

Citation: Lassaad Aloui, Imen El Khal El Taief. The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds. Mathematical Control and Related Fields, 2020, 10 (4) : 699-714. doi: 10.3934/mcrf.2020016
References:
[1]

L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59 (2008), 53-62.  doi: 10.1007/BF03191181.

[2]

L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptotic Analysis, 59 (2008), 179-193.  doi: 10.3233/ASY-2008-0892.

[3]

L. Aloui, M. Khenissi and L. Robbiano, The Kato smoothing effect for regularized Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1759–1792, arXiv: 1204.1904v1. doi: 10.1016/j.anihpc.2016.12.006.

[4]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.

[5]

M. Ben-Artzi and A. Devinatz, Regularity and decay of solutions to the Stark evolution equation, J. Funct. Anal., 154 (1998), 501-512.  doi: 10.1006/jfan.1997.3211.

[6]

M. Ben-Artzi and S. Klainerman, Decay and regularity for the Schrödinger equation, J. Anal. Math., 58 (1992), 25-37.  doi: 10.1007/BF02790356.

[7]

N. Burq, Smoothing effect for Schrödinger boundary value problems, Duke Math. J., 123 (2004), 403-427.  doi: 10.1215/S0012-7094-04-12326-7.

[8]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domain, Ann. Inst. H. Poincaré Anal. Non. Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.

[9]

N. BurqP. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.  doi: 10.1353/ajm.2004.0016.

[10]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.  doi: 10.1090/S0894-0347-1988-0928265-0.

[11]

P. Constantin and J.-C. Saut, Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J., 38 (1989), 791-810.  doi: 10.1512/iumj.1989.38.38037.

[12]

E. B. Davies, The functional calculus, J. London Math. Soc. (2), 52 (1995), 166-176.  doi: 10.1112/jlms/52.1.166.

[13]

B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.

[14] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999.  doi: 10.1017/CBO9780511662195.
[15]

S. Doï, Remarks on the Cauchy problem for Schrödinger type equations, Communications in Partial Differential Equations, 21 (1996), 163-178.  doi: 10.1080/03605309608821178.

[16]

S. Doï, Smoothing effects for Schrödinger evolution equation and global behaviour of geodesic flow, Math. Ann., 318 (2000), 355-389.  doi: 10.1007/s002080000128.

[17]

S. Doï, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., 82 (1996), 679-706.  doi: 10.1215/S0012-7094-96-08228-9.

[18]

O. Ivanovici and F. Planchon, Square function and heat flow estimates on domains, Comm. Partial Differential Equations, 42 (2017), 1447–1466, arXiv: 0812.2733v2. doi: 10.1080/03605302.2017.1365267.

[19]

R. B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59.  doi: 10.1215/S0012-7094-79-04604-0.

[20]

F. Nier, A variational formulation of Schrödinger-Poisson systems in dimension $d\leq3$, Comm. Partial Differential Equations, 18 (1993), 1125-1147.  doi: 10.1080/03605309308820966.

[21]

J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823.  doi: 10.1002/cpa.3160220605.

[22]

J. Rauch and M. Taylor, Exponential decay of solutions of hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86.  doi: 10.1512/iumj.1975.24.24004.

[23]

L. Robbiano and C. Zuily, icrolocal analytic smoothing effect for the Schrödinger equation, Duke Mathematical Journal, 100 (1999), 93-129.  doi: 10.1215/S0012-7094-99-10003-2.

[24]

P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.  doi: 10.1215/S0012-7094-87-05535-9.

[25]

J. Szeftel, Microlocal dispersive smoothing for the nonlinear Schrödinger equation, SIAM Journal on Mathematical Analysis, 37 (2005), 549-597.  doi: 10.1137/S0036141003432109.

[26]

L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878.  doi: 10.2307/2047326.

[27]

X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. I.H.P. Phys. Théor., 47 (1987), 25-37.  doi: 10.1119/1.14979.

show all references

References:
[1]

L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59 (2008), 53-62.  doi: 10.1007/BF03191181.

[2]

L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptotic Analysis, 59 (2008), 179-193.  doi: 10.3233/ASY-2008-0892.

[3]

L. Aloui, M. Khenissi and L. Robbiano, The Kato smoothing effect for regularized Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1759–1792, arXiv: 1204.1904v1. doi: 10.1016/j.anihpc.2016.12.006.

[4]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.

[5]

M. Ben-Artzi and A. Devinatz, Regularity and decay of solutions to the Stark evolution equation, J. Funct. Anal., 154 (1998), 501-512.  doi: 10.1006/jfan.1997.3211.

[6]

M. Ben-Artzi and S. Klainerman, Decay and regularity for the Schrödinger equation, J. Anal. Math., 58 (1992), 25-37.  doi: 10.1007/BF02790356.

[7]

N. Burq, Smoothing effect for Schrödinger boundary value problems, Duke Math. J., 123 (2004), 403-427.  doi: 10.1215/S0012-7094-04-12326-7.

[8]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domain, Ann. Inst. H. Poincaré Anal. Non. Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.

[9]

N. BurqP. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.  doi: 10.1353/ajm.2004.0016.

[10]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.  doi: 10.1090/S0894-0347-1988-0928265-0.

[11]

P. Constantin and J.-C. Saut, Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J., 38 (1989), 791-810.  doi: 10.1512/iumj.1989.38.38037.

[12]

E. B. Davies, The functional calculus, J. London Math. Soc. (2), 52 (1995), 166-176.  doi: 10.1112/jlms/52.1.166.

[13]

B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.

[14] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999.  doi: 10.1017/CBO9780511662195.
[15]

S. Doï, Remarks on the Cauchy problem for Schrödinger type equations, Communications in Partial Differential Equations, 21 (1996), 163-178.  doi: 10.1080/03605309608821178.

[16]

S. Doï, Smoothing effects for Schrödinger evolution equation and global behaviour of geodesic flow, Math. Ann., 318 (2000), 355-389.  doi: 10.1007/s002080000128.

[17]

S. Doï, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., 82 (1996), 679-706.  doi: 10.1215/S0012-7094-96-08228-9.

[18]

O. Ivanovici and F. Planchon, Square function and heat flow estimates on domains, Comm. Partial Differential Equations, 42 (2017), 1447–1466, arXiv: 0812.2733v2. doi: 10.1080/03605302.2017.1365267.

[19]

R. B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59.  doi: 10.1215/S0012-7094-79-04604-0.

[20]

F. Nier, A variational formulation of Schrödinger-Poisson systems in dimension $d\leq3$, Comm. Partial Differential Equations, 18 (1993), 1125-1147.  doi: 10.1080/03605309308820966.

[21]

J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823.  doi: 10.1002/cpa.3160220605.

[22]

J. Rauch and M. Taylor, Exponential decay of solutions of hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86.  doi: 10.1512/iumj.1975.24.24004.

[23]

L. Robbiano and C. Zuily, icrolocal analytic smoothing effect for the Schrödinger equation, Duke Mathematical Journal, 100 (1999), 93-129.  doi: 10.1215/S0012-7094-99-10003-2.

[24]

P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.  doi: 10.1215/S0012-7094-87-05535-9.

[25]

J. Szeftel, Microlocal dispersive smoothing for the nonlinear Schrödinger equation, SIAM Journal on Mathematical Analysis, 37 (2005), 549-597.  doi: 10.1137/S0036141003432109.

[26]

L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874-878.  doi: 10.2307/2047326.

[27]

X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. I.H.P. Phys. Théor., 47 (1987), 25-37.  doi: 10.1119/1.14979.

[1]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[2]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[3]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[4]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[5]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[6]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[7]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[8]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[9]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[10]

Yoshinori Morimoto, Chao-Jiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic and Related Models, 2020, 13 (5) : 951-978. doi: 10.3934/krm.2020033

[11]

Nakao Hayashi, Pavel I. Naumkin, Patrick-Nicolas Pipolo. Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 685-695. doi: 10.3934/dcds.1999.5.685

[12]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[13]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[14]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[15]

Chao Yang. Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4631-4642. doi: 10.3934/dcdss.2021136

[16]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[19]

Alessio Pomponio, Simone Secchi. A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities. Communications on Pure and Applied Analysis, 2010, 9 (3) : 741-750. doi: 10.3934/cpaa.2010.9.741

[20]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (380)
  • HTML views (532)
  • Cited by (0)

Other articles
by authors

[Back to Top]