[1]
|
L. Arnold and C. Tudor, Stationary and almost periodic solutions of almost periodic affine stochastic differential equations, Stochastics and Stochastic Reports, 64 (1998), 177-193.
doi: 10.1080/17442509808834163.
|
[2]
|
G. K. Basak, A. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift, J. Math. Anal. Appl., 202 (1996), 604-622.
doi: 10.1006/jmaa.1996.0336.
|
[3]
|
P. H. Bezandry and T. Diagana, Almost Periodic Stochastic Processes, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9476-9.
|
[4]
|
R. Dong, Stabilization of Stochastic Differential Equations by Feedback Controls Based on Discrete-time Observations, PhD thesis, University of Strathclyde, UK, 2019.
|
[5]
|
R. Dong, Almost sure exponential stabilization by stochastic feedback control based on discrete-time observations, Stochastic Analysis and Applications, 36 (2018), 561-583.
doi: 10.1080/07362994.2018.1433046.
|
[6]
|
R. Dong and X. R. Mao, On $p$th moment stabilization of hybrid systems by discrete-time feedback control, Stochastic Analysis and Applications, 35 (2017), 803-822.
doi: 10.1080/07362994.2017.1324798.
|
[7]
|
L. Y. Hu, Y. Ren and T. B. Xu, $p$-Moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Applied Mathematics and Computation, 230 (2014), 231-237.
doi: 10.1016/j.amc.2013.12.111.
|
[8]
|
C. X. Huang, Y. G. He, L. H. Huang and W. J. Zhu, $p$th moment stability analysis of stochastic recurrent neural networks with time-varying delays, Information Sciences, 178 (2008), 2194-2203.
doi: 10.1016/j.ins.2008.01.008.
|
[9]
|
Y. D. Ji and H. J. Chizeck, Controllability, stabilizability and continuous-time Markovian jump linear quadratic control, IEEE Transactions on Automatic Control, 35 (1990), 777-788.
doi: 10.1109/9.57016.
|
[10]
|
Y. Y. Li, J. Q. Lu, C. H. Kou, X. R. Mao and J. F. Pan, Robust stabilization of hybrid uncertain stochastic systems by discrete-time feedback control, Optimal Control Applications and Methods, 38 (2017), 847-859.
doi: 10.1002/oca.2293.
|
[11]
|
X. Y. Li and X. R. Mao, A note on almost sure asymptotic stability of neutral stochastic delay differential equations with Markovian switching, Automatica J. IFAC, 48 (2012), 2329-2334.
doi: 10.1016/j.automatica.2012.06.045.
|
[12]
|
J. Q. Lu, Y. Y. Li, X. R. Mao and Q. W. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state and mode observations, Asian Journal of Control, 19 (2017), 1943-1953.
doi: 10.1002/asjc.1515.
|
[13]
|
X. R. Mao, Stability of stochastic differential equations with Markovian switching, Sto. Proc. Their Appl., 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2.
|
[14]
|
X. R. Mao, Exponential stability of stochastic delay interval systems with Markovian switching, IEEE Transactions on Automatic Control, 47 (2002), 1604-1612.
doi: 10.1109/TAC.2002.803529.
|
[15]
|
X. R. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402.
|
[16]
|
X. R. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.
doi: 10.1016/j.automatica.2013.09.005.
|
[17]
|
X. R. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Transactions on Automatic Control, 61 (2016), 1619-1624.
doi: 10.1109/TAC.2015.2471696.
|
[18]
|
X. R. Mao, G. G. Yin and C. G. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.
doi: 10.1016/j.automatica.2006.09.006.
|
[19]
|
X. R. Mao and C. G. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473.
|
[20]
|
X. R. Mao, W. Liu, L. J. Hu, Q. Luo and J. Q. Lu, Stabilisation of hybrid stochastic differential equations by feedback control based on discrete-time state observations, Systems Control Lett., 73 (2014), 88-95.
doi: 10.1016/j.sysconle.2014.08.011.
|
[21]
|
Y. G. Niu, D. W. C. Ho and J. Lam, Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica J. IFAC, 41 (2005), 873-880.
doi: 10.1016/j.automatica.2004.11.035.
|
[22]
|
R. Rifhat, L. Wang and Z. D. Teng, Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients, Physica A: Statistical Mechanics and its Applications, 481 (2017), 176-190.
doi: 10.1016/j.physa.2017.04.016.
|
[23]
|
J. L. Sabo and D. M. Post, Quantifying periodic, stochastic, and catastrophic environmental variation, Ecological Monographs, 78 (2008), 19-40.
doi: 10.1890/06-1340.1.
|
[24]
|
J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, 1991.
|
[25]
|
G. F. Song, B.-C. Zheng and X. R. Mao, Stabilisation of hybrid stochastic differential equations by feedback control based on discrete-time observations of state and mode, IET Control Theory Appl., 11 (2017), 301-307.
doi: 10.1049/iet-cta.2016.0635.
|
[26]
|
M. H. Sun, J. Lam, S. Y. Xu and Y. Zou, Robust exponential stabilization for Markovian jump systems with mode-dependent input delay, Automatica J. IFAC, 43 (2007), 1799-1807.
doi: 10.1016/j.automatica.2007.03.005.
|
[27]
|
I. Tsiakas, Periodic stochastic volatility and fat tails, Journal of Financial Econometrics, 4 (2006), 90-135.
doi: 10.1093/jjfinec/nbi023.
|
[28]
|
C. Wang and R. P. Agarwal, Almost periodic solution for a new type of neutral impulsive stochastic Lasota-Wazewska timescale model, Applied Mathematics Letters, 70 (2017), 58-65.
doi: 10.1016/j.aml.2017.03.009.
|
[29]
|
C. Wang, R. P. Agarwal and S. Rathinasamy, Almost periodic oscillations for delay impulsive stochastic Nicholson's blowflies timescale model, Computational and Applied Mathematics, 37 (2018), 3005-3026.
doi: 10.1007/s40314-017-0495-0.
|
[30]
|
G. C. Wang, Z. Wu and J. Xiong, A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information, IEEE Transactions on Automatic Control, 60 (2015), 2904-2916.
doi: 10.1109/TAC.2015.2411871.
|
[31]
|
Y. Wang and Z. Liu, Almost periodic solutions for stochastic differential equations with Lévy noise, Nonlinearity, 25 (2012), 2803-2821.
doi: 10.1088/0951-7715/25/10/2803.
|
[32]
|
L. G. Wu, P. Shi and H. J. Gao, State estimation and sliding mode control of Markovian jump singular systems, IEEE Transactions on Automatic Control, 55 (2010), 1213-1219.
doi: 10.1109/TAC.2010.2042234.
|
[33]
|
S. R. You, L. J. Hu, W. Mao and X. R. Mao, Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations, Statist. Probab. Lett., 102 (2015), 8-16.
doi: 10.1016/j.spl.2015.03.006.
|
[34]
|
S. R. You, W. Liu, J. Q. Lu, X. R. Mao and Q. W. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905-925.
doi: 10.1137/140985779.
|