December  2020, 10(4): 761-783. doi: 10.3934/mcrf.2020019

Non-exponential discounting portfolio management with habit formation

1. 

School of Insurance, Central University of Finance and Economics, Beijing, 100081, China

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 999077, China

3. 

School of Statistics, East China Normal University, Shanghai, 200241, China

* Corresponding author: Liyuan Lin

Received  April 2019 Revised  January 2020 Published  December 2020 Early access  March 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant No. 11771466, 11301559 and 11601157)

This paper studies the portfolio management problem for an individual with a non-exponential discount function and habit formation in finite time. The investor receives a deterministic income, invests in risky assets, buys insurance and consumes continuously. The objective is to maximize the utility of excessive consumption, heritage and terminal wealth. The non-exponential discounting makes the optimal strategy adopted by a naive person time-inconsistent. The equilibrium for a sophisticated person is Nash subgame perfect equilibrium, and the sophisticated person is time-consistent. We calculate the analytical solution for both the naive strategy and equilibrium strategy in the CRRA case and compare the results of the two strategies. By numerical simulation, we find that the sophisticated individual will spend less on consumption and insurance and save more than the naive person. The difference in the strategies of the naive and sophisticated person decreases over time. Furthermore, if an individual of either type is more patient in the future or has a greater tendency toward habit formation, he/she will consume less and buy less insurance, and the degree of inconsistency will also be increased. The sophisticated person's consumption and habit level are initially lower than those of a naive person but are higher in later periods.

Citation: Jingzhen Liu, Liyuan Lin, Ka Fai Cedric Yiu, Jiaqin Wei. Non-exponential discounting portfolio management with habit formation. Mathematical Control and Related Fields, 2020, 10 (4) : 761-783. doi: 10.3934/mcrf.2020019
References:
[1]

G. Ainslie, Special reward: A behavioral theory of impulsiveness and impulse control, Psychological Bulletin, 82 (1975), 463-496.  doi: 10.1037/h0076860.

[2]

I. Alia, A non-exponential discounting time-inconsistent strochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.

[3]

O. Azfar, Rationalizing hyperbolic discounting, Journal of Economic Behavior and Organization, 38 (1999), 245-252.  doi: 10.1016/S0167-2681(99)00009-8.

[4]

T. BjörkA. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[5]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.

[6]

S. M. ChenZ. F. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathmatics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.

[7]

S. Chen and G. B. Li, Time-inconsistent preferences, consumption, investment and life insurance decisions, Applied Economics Letters, 27 (2020), 392-399.  doi: 10.1080/13504851.2019.1617395.

[8]

G. M. Constantinides, Habit Formation: A Resolution of the Equity Premium Puzzle, The University of Chicago Press, 98 (1990), 519–543. Available from: https://www.jstor.org/stable/2937698. doi: 10.1086/261693.

[9]

J. B. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274. 

[10]

A. DíazJ. Pijoan-Mas and J. V. Ríos-Rull, Precautionary savings and wealth distribution under habit formation preferences, Journal of Monetary Economics, 50 (2003), 1257-1291.  doi: 10.1016/S0304-3932(03)00078-3.

[11]

I. EkelandO. Mbodji and T. A. Pirvu, Time-Consistent Portfolio Management, SIAM Journal of Financial Math, 3 (2012), 1-32.  doi: 10.1137/100810034.

[12]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal On Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.

[13]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM Journal On Control and Optimization, 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.

[14]

J. H. HuangX. Li and J. M. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equation in infinite horizon, Mathematical Control and Related Field, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.

[15]

D. Laibson, Golden eggs and hyperbolic discounting, Quarterly Journal of Economics, 112 (1997), 443-477. 

[16]

D. Laibson, Life-cycle consumption and hyperbolic discount functions, European Economic Review, 42 (1998), 861-871.  doi: 10.1016/S0014-2921(97)00132-3.

[17]

P. LallyC. H. M. V. JaarsveldH. W. W. Potts and J. Wardle, How are habits formed: Modelling habit formation in the real world, European Journal of Social Psychology, 40 (2010), 998-1009.  doi: 10.1002/ejsp.674.

[18]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean variance insurers with state dependent risk aversion, Insurance Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.

[19]

J. Z. Liu, L. Y. Lin and H. Meng, Optimal consumption, life insurance and investment decision with habit formation, work in progress.

[20]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573-597. 

[21]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[22]

J. Muellbauer, Habits, rationality and myopia in the life cycle consumption function, Annales d'Économie et de Statistique, 9 (1988), 47–70. doi: 10.2307/20075681.

[23]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 2 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.

[24]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.

[25]

S. X. WangX. M. Rong and H. Zhao, Mean-variance problem for an insurer with default risk under a jump-diffusion model, Communications in Statistics-Theory and Methods, 48 (2019), 4421-4249.  doi: 10.1080/03610926.2018.1490432.

[26]

T. X. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problem, Mathematical Control and Related Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.

[27]

J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.

[28]

Y. ZengZ. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496.  doi: 10.3934/jimo.2010.6.483.

[29]

C. B. Zhang and Z. B. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.

[30]

Q. ZhaoR. M. Wang and J. Q. Wei, Exponential utility maximization for an insurer with timeinconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.  doi: 10.1016/j.insmatheco.2016.06.003.

[31]

Q. ZhaoR. M. Wang and J. Q. Wei, Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan, Journal of Industrial and Management Optimization, 12 (2016), 1557-1585.  doi: 10.3934/jimo.2016.12.1557.

show all references

References:
[1]

G. Ainslie, Special reward: A behavioral theory of impulsiveness and impulse control, Psychological Bulletin, 82 (1975), 463-496.  doi: 10.1037/h0076860.

[2]

I. Alia, A non-exponential discounting time-inconsistent strochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.

[3]

O. Azfar, Rationalizing hyperbolic discounting, Journal of Economic Behavior and Organization, 38 (1999), 245-252.  doi: 10.1016/S0167-2681(99)00009-8.

[4]

T. BjörkA. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[5]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.

[6]

S. M. ChenZ. F. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathmatics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.

[7]

S. Chen and G. B. Li, Time-inconsistent preferences, consumption, investment and life insurance decisions, Applied Economics Letters, 27 (2020), 392-399.  doi: 10.1080/13504851.2019.1617395.

[8]

G. M. Constantinides, Habit Formation: A Resolution of the Equity Premium Puzzle, The University of Chicago Press, 98 (1990), 519–543. Available from: https://www.jstor.org/stable/2937698. doi: 10.1086/261693.

[9]

J. B. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274. 

[10]

A. DíazJ. Pijoan-Mas and J. V. Ríos-Rull, Precautionary savings and wealth distribution under habit formation preferences, Journal of Monetary Economics, 50 (2003), 1257-1291.  doi: 10.1016/S0304-3932(03)00078-3.

[11]

I. EkelandO. Mbodji and T. A. Pirvu, Time-Consistent Portfolio Management, SIAM Journal of Financial Math, 3 (2012), 1-32.  doi: 10.1137/100810034.

[12]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal On Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.

[13]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM Journal On Control and Optimization, 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.

[14]

J. H. HuangX. Li and J. M. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equation in infinite horizon, Mathematical Control and Related Field, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.

[15]

D. Laibson, Golden eggs and hyperbolic discounting, Quarterly Journal of Economics, 112 (1997), 443-477. 

[16]

D. Laibson, Life-cycle consumption and hyperbolic discount functions, European Economic Review, 42 (1998), 861-871.  doi: 10.1016/S0014-2921(97)00132-3.

[17]

P. LallyC. H. M. V. JaarsveldH. W. W. Potts and J. Wardle, How are habits formed: Modelling habit formation in the real world, European Journal of Social Psychology, 40 (2010), 998-1009.  doi: 10.1002/ejsp.674.

[18]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean variance insurers with state dependent risk aversion, Insurance Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.

[19]

J. Z. Liu, L. Y. Lin and H. Meng, Optimal consumption, life insurance and investment decision with habit formation, work in progress.

[20]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573-597. 

[21]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[22]

J. Muellbauer, Habits, rationality and myopia in the life cycle consumption function, Annales d'Économie et de Statistique, 9 (1988), 47–70. doi: 10.2307/20075681.

[23]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 2 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.

[24]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.

[25]

S. X. WangX. M. Rong and H. Zhao, Mean-variance problem for an insurer with default risk under a jump-diffusion model, Communications in Statistics-Theory and Methods, 48 (2019), 4421-4249.  doi: 10.1080/03610926.2018.1490432.

[26]

T. X. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problem, Mathematical Control and Related Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.

[27]

J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.

[28]

Y. ZengZ. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496.  doi: 10.3934/jimo.2010.6.483.

[29]

C. B. Zhang and Z. B. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.

[30]

Q. ZhaoR. M. Wang and J. Q. Wei, Exponential utility maximization for an insurer with timeinconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.  doi: 10.1016/j.insmatheco.2016.06.003.

[31]

Q. ZhaoR. M. Wang and J. Q. Wei, Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan, Journal of Industrial and Management Optimization, 12 (2016), 1557-1585.  doi: 10.3934/jimo.2016.12.1557.

Figure 1.  The impact of $ k $ on $ \bar{A} $ and $ \hat{A} $
Figure 2.  The impact of $ k $ in the degree of inconsistency
Figure 3.  The impact of habit on $ \bar{A} $ and $ \hat{A} $
Figure 4.  The impact of habit on the degree of inconsistency
Figure 5.  Strategy for individual with or without habit
Figure 6.  Example of $ \bar{H}(t)-\hat{H}(t) $ and $ \bar{c}(t)-\hat{c}(t) $
[1]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[2]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046

[3]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[4]

Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130

[5]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial and Management Optimization, 2020, 16 (1) : 207-230. doi: 10.3934/jimo.2018147

[6]

Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021137

[7]

Ailing Shi, Xingyi Li, Zhongfei Li. Optimal portfolio selection with life insurance under subjective survival belief and habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022051

[8]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[9]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[10]

Jingzhen Liu, Shiqi Yan, Shan Jiang, Jiaqin Wei. Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022040

[11]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[12]

Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2639-2667. doi: 10.3934/jimo.2020087

[13]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control and Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[14]

Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223

[15]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[16]

Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029

[17]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[18]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[19]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[20]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (443)
  • HTML views (551)
  • Cited by (0)

[Back to Top]