December  2020, 10(4): 761-783. doi: 10.3934/mcrf.2020019

Non-exponential discounting portfolio management with habit formation

1. 

School of Insurance, Central University of Finance and Economics, Beijing, 100081, China

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 999077, China

3. 

School of Statistics, East China Normal University, Shanghai, 200241, China

* Corresponding author: Liyuan Lin

Received  April 2019 Revised  January 2020 Published  March 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant No. 11771466, 11301559 and 11601157)

This paper studies the portfolio management problem for an individual with a non-exponential discount function and habit formation in finite time. The investor receives a deterministic income, invests in risky assets, buys insurance and consumes continuously. The objective is to maximize the utility of excessive consumption, heritage and terminal wealth. The non-exponential discounting makes the optimal strategy adopted by a naive person time-inconsistent. The equilibrium for a sophisticated person is Nash subgame perfect equilibrium, and the sophisticated person is time-consistent. We calculate the analytical solution for both the naive strategy and equilibrium strategy in the CRRA case and compare the results of the two strategies. By numerical simulation, we find that the sophisticated individual will spend less on consumption and insurance and save more than the naive person. The difference in the strategies of the naive and sophisticated person decreases over time. Furthermore, if an individual of either type is more patient in the future or has a greater tendency toward habit formation, he/she will consume less and buy less insurance, and the degree of inconsistency will also be increased. The sophisticated person's consumption and habit level are initially lower than those of a naive person but are higher in later periods.

Citation: Jingzhen Liu, Liyuan Lin, Ka Fai Cedric Yiu, Jiaqin Wei. Non-exponential discounting portfolio management with habit formation. Mathematical Control & Related Fields, 2020, 10 (4) : 761-783. doi: 10.3934/mcrf.2020019
References:
[1]

G. Ainslie, Special reward: A behavioral theory of impulsiveness and impulse control, Psychological Bulletin, 82 (1975), 463-496.  doi: 10.1037/h0076860.  Google Scholar

[2]

I. Alia, A non-exponential discounting time-inconsistent strochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.  Google Scholar

[3]

O. Azfar, Rationalizing hyperbolic discounting, Journal of Economic Behavior and Organization, 38 (1999), 245-252.  doi: 10.1016/S0167-2681(99)00009-8.  Google Scholar

[4]

T. BjörkA. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[6]

S. M. ChenZ. F. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathmatics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.  Google Scholar

[7]

S. Chen and G. B. Li, Time-inconsistent preferences, consumption, investment and life insurance decisions, Applied Economics Letters, 27 (2020), 392-399.  doi: 10.1080/13504851.2019.1617395.  Google Scholar

[8]

G. M. Constantinides, Habit Formation: A Resolution of the Equity Premium Puzzle, The University of Chicago Press, 98 (1990), 519–543. Available from: https://www.jstor.org/stable/2937698. doi: 10.1086/261693.  Google Scholar

[9]

J. B. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.   Google Scholar

[10]

A. DíazJ. Pijoan-Mas and J. V. Ríos-Rull, Precautionary savings and wealth distribution under habit formation preferences, Journal of Monetary Economics, 50 (2003), 1257-1291.  doi: 10.1016/S0304-3932(03)00078-3.  Google Scholar

[11]

I. EkelandO. Mbodji and T. A. Pirvu, Time-Consistent Portfolio Management, SIAM Journal of Financial Math, 3 (2012), 1-32.  doi: 10.1137/100810034.  Google Scholar

[12]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal On Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.  Google Scholar

[13]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM Journal On Control and Optimization, 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.  Google Scholar

[14]

J. H. HuangX. Li and J. M. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equation in infinite horizon, Mathematical Control and Related Field, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[15]

D. Laibson, Golden eggs and hyperbolic discounting, Quarterly Journal of Economics, 112 (1997), 443-477.   Google Scholar

[16]

D. Laibson, Life-cycle consumption and hyperbolic discount functions, European Economic Review, 42 (1998), 861-871.  doi: 10.1016/S0014-2921(97)00132-3.  Google Scholar

[17]

P. LallyC. H. M. V. JaarsveldH. W. W. Potts and J. Wardle, How are habits formed: Modelling habit formation in the real world, European Journal of Social Psychology, 40 (2010), 998-1009.  doi: 10.1002/ejsp.674.  Google Scholar

[18]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean variance insurers with state dependent risk aversion, Insurance Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.  Google Scholar

[19]

J. Z. Liu, L. Y. Lin and H. Meng, Optimal consumption, life insurance and investment decision with habit formation, work in progress. Google Scholar

[20]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573-597.   Google Scholar

[21]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[22]

J. Muellbauer, Habits, rationality and myopia in the life cycle consumption function, Annales d'Économie et de Statistique, 9 (1988), 47–70. doi: 10.2307/20075681.  Google Scholar

[23]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 2 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.  Google Scholar

[24]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.  Google Scholar

[25]

S. X. WangX. M. Rong and H. Zhao, Mean-variance problem for an insurer with default risk under a jump-diffusion model, Communications in Statistics-Theory and Methods, 48 (2019), 4421-4249.  doi: 10.1080/03610926.2018.1490432.  Google Scholar

[26]

T. X. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problem, Mathematical Control and Related Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.  Google Scholar

[27]

J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.  Google Scholar

[28]

Y. ZengZ. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496.  doi: 10.3934/jimo.2010.6.483.  Google Scholar

[29]

C. B. Zhang and Z. B. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[30]

Q. ZhaoR. M. Wang and J. Q. Wei, Exponential utility maximization for an insurer with timeinconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.  doi: 10.1016/j.insmatheco.2016.06.003.  Google Scholar

[31]

Q. ZhaoR. M. Wang and J. Q. Wei, Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan, Journal of Industrial and Management Optimization, 12 (2016), 1557-1585.  doi: 10.3934/jimo.2016.12.1557.  Google Scholar

show all references

References:
[1]

G. Ainslie, Special reward: A behavioral theory of impulsiveness and impulse control, Psychological Bulletin, 82 (1975), 463-496.  doi: 10.1037/h0076860.  Google Scholar

[2]

I. Alia, A non-exponential discounting time-inconsistent strochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.  Google Scholar

[3]

O. Azfar, Rationalizing hyperbolic discounting, Journal of Economic Behavior and Organization, 38 (1999), 245-252.  doi: 10.1016/S0167-2681(99)00009-8.  Google Scholar

[4]

T. BjörkA. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[6]

S. M. ChenZ. F. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathmatics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.  Google Scholar

[7]

S. Chen and G. B. Li, Time-inconsistent preferences, consumption, investment and life insurance decisions, Applied Economics Letters, 27 (2020), 392-399.  doi: 10.1080/13504851.2019.1617395.  Google Scholar

[8]

G. M. Constantinides, Habit Formation: A Resolution of the Equity Premium Puzzle, The University of Chicago Press, 98 (1990), 519–543. Available from: https://www.jstor.org/stable/2937698. doi: 10.1086/261693.  Google Scholar

[9]

J. B. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.   Google Scholar

[10]

A. DíazJ. Pijoan-Mas and J. V. Ríos-Rull, Precautionary savings and wealth distribution under habit formation preferences, Journal of Monetary Economics, 50 (2003), 1257-1291.  doi: 10.1016/S0304-3932(03)00078-3.  Google Scholar

[11]

I. EkelandO. Mbodji and T. A. Pirvu, Time-Consistent Portfolio Management, SIAM Journal of Financial Math, 3 (2012), 1-32.  doi: 10.1137/100810034.  Google Scholar

[12]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal On Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.  Google Scholar

[13]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM Journal On Control and Optimization, 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.  Google Scholar

[14]

J. H. HuangX. Li and J. M. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equation in infinite horizon, Mathematical Control and Related Field, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[15]

D. Laibson, Golden eggs and hyperbolic discounting, Quarterly Journal of Economics, 112 (1997), 443-477.   Google Scholar

[16]

D. Laibson, Life-cycle consumption and hyperbolic discount functions, European Economic Review, 42 (1998), 861-871.  doi: 10.1016/S0014-2921(97)00132-3.  Google Scholar

[17]

P. LallyC. H. M. V. JaarsveldH. W. W. Potts and J. Wardle, How are habits formed: Modelling habit formation in the real world, European Journal of Social Psychology, 40 (2010), 998-1009.  doi: 10.1002/ejsp.674.  Google Scholar

[18]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean variance insurers with state dependent risk aversion, Insurance Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.  Google Scholar

[19]

J. Z. Liu, L. Y. Lin and H. Meng, Optimal consumption, life insurance and investment decision with habit formation, work in progress. Google Scholar

[20]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573-597.   Google Scholar

[21]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[22]

J. Muellbauer, Habits, rationality and myopia in the life cycle consumption function, Annales d'Économie et de Statistique, 9 (1988), 47–70. doi: 10.2307/20075681.  Google Scholar

[23]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 2 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.  Google Scholar

[24]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.  Google Scholar

[25]

S. X. WangX. M. Rong and H. Zhao, Mean-variance problem for an insurer with default risk under a jump-diffusion model, Communications in Statistics-Theory and Methods, 48 (2019), 4421-4249.  doi: 10.1080/03610926.2018.1490432.  Google Scholar

[26]

T. X. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problem, Mathematical Control and Related Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.  Google Scholar

[27]

J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.  Google Scholar

[28]

Y. ZengZ. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496.  doi: 10.3934/jimo.2010.6.483.  Google Scholar

[29]

C. B. Zhang and Z. B. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[30]

Q. ZhaoR. M. Wang and J. Q. Wei, Exponential utility maximization for an insurer with timeinconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.  doi: 10.1016/j.insmatheco.2016.06.003.  Google Scholar

[31]

Q. ZhaoR. M. Wang and J. Q. Wei, Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan, Journal of Industrial and Management Optimization, 12 (2016), 1557-1585.  doi: 10.3934/jimo.2016.12.1557.  Google Scholar

Figure 1.  The impact of $ k $ on $ \bar{A} $ and $ \hat{A} $
Figure 2.  The impact of $ k $ in the degree of inconsistency
Figure 3.  The impact of habit on $ \bar{A} $ and $ \hat{A} $
Figure 4.  The impact of habit on the degree of inconsistency
Figure 5.  Strategy for individual with or without habit
Figure 6.  Example of $ \bar{H}(t)-\hat{H}(t) $ and $ \bar{c}(t)-\hat{c}(t) $
[1]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[2]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[3]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2020, 16 (1) : 207-230. doi: 10.3934/jimo.2018147

[4]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[5]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control & Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[6]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[7]

Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020087

[8]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control & Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[9]

Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223

[10]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[11]

Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020029

[12]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[13]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[14]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[15]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[16]

T. Zolezzi. Extended wellposedness of optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 547-553. doi: 10.3934/dcds.1995.1.547

[17]

Martino Bardi, Gabriele Terrone. On the homogenization of some non-coercive Hamilton--Jacobi--Isaacs equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 207-236. doi: 10.3934/cpaa.2013.12.207

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020024

[19]

Yiling Chen, Baojun Bian. optimal investment and dividend policy in an insurance company: A varied bound for dividend rates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5083-5105. doi: 10.3934/dcdsb.2019044

[20]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020024

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (83)
  • HTML views (312)
  • Cited by (0)

[Back to Top]