December  2020, 10(4): 761-783. doi: 10.3934/mcrf.2020019

Non-exponential discounting portfolio management with habit formation

1. 

School of Insurance, Central University of Finance and Economics, Beijing, 100081, China

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 999077, China

3. 

School of Statistics, East China Normal University, Shanghai, 200241, China

* Corresponding author: Liyuan Lin

Received  April 2019 Revised  January 2020 Published  March 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant No. 11771466, 11301559 and 11601157)

This paper studies the portfolio management problem for an individual with a non-exponential discount function and habit formation in finite time. The investor receives a deterministic income, invests in risky assets, buys insurance and consumes continuously. The objective is to maximize the utility of excessive consumption, heritage and terminal wealth. The non-exponential discounting makes the optimal strategy adopted by a naive person time-inconsistent. The equilibrium for a sophisticated person is Nash subgame perfect equilibrium, and the sophisticated person is time-consistent. We calculate the analytical solution for both the naive strategy and equilibrium strategy in the CRRA case and compare the results of the two strategies. By numerical simulation, we find that the sophisticated individual will spend less on consumption and insurance and save more than the naive person. The difference in the strategies of the naive and sophisticated person decreases over time. Furthermore, if an individual of either type is more patient in the future or has a greater tendency toward habit formation, he/she will consume less and buy less insurance, and the degree of inconsistency will also be increased. The sophisticated person's consumption and habit level are initially lower than those of a naive person but are higher in later periods.

Citation: Jingzhen Liu, Liyuan Lin, Ka Fai Cedric Yiu, Jiaqin Wei. Non-exponential discounting portfolio management with habit formation. Mathematical Control & Related Fields, 2020, 10 (4) : 761-783. doi: 10.3934/mcrf.2020019
References:
[1]

G. Ainslie, Special reward: A behavioral theory of impulsiveness and impulse control, Psychological Bulletin, 82 (1975), 463-496.  doi: 10.1037/h0076860.  Google Scholar

[2]

I. Alia, A non-exponential discounting time-inconsistent strochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.  Google Scholar

[3]

O. Azfar, Rationalizing hyperbolic discounting, Journal of Economic Behavior and Organization, 38 (1999), 245-252.  doi: 10.1016/S0167-2681(99)00009-8.  Google Scholar

[4]

T. BjörkA. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[6]

S. M. ChenZ. F. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathmatics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.  Google Scholar

[7]

S. Chen and G. B. Li, Time-inconsistent preferences, consumption, investment and life insurance decisions, Applied Economics Letters, 27 (2020), 392-399.  doi: 10.1080/13504851.2019.1617395.  Google Scholar

[8]

G. M. Constantinides, Habit Formation: A Resolution of the Equity Premium Puzzle, The University of Chicago Press, 98 (1990), 519–543. Available from: https://www.jstor.org/stable/2937698. doi: 10.1086/261693.  Google Scholar

[9]

J. B. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.   Google Scholar

[10]

A. DíazJ. Pijoan-Mas and J. V. Ríos-Rull, Precautionary savings and wealth distribution under habit formation preferences, Journal of Monetary Economics, 50 (2003), 1257-1291.  doi: 10.1016/S0304-3932(03)00078-3.  Google Scholar

[11]

I. EkelandO. Mbodji and T. A. Pirvu, Time-Consistent Portfolio Management, SIAM Journal of Financial Math, 3 (2012), 1-32.  doi: 10.1137/100810034.  Google Scholar

[12]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal On Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.  Google Scholar

[13]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM Journal On Control and Optimization, 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.  Google Scholar

[14]

J. H. HuangX. Li and J. M. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equation in infinite horizon, Mathematical Control and Related Field, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[15]

D. Laibson, Golden eggs and hyperbolic discounting, Quarterly Journal of Economics, 112 (1997), 443-477.   Google Scholar

[16]

D. Laibson, Life-cycle consumption and hyperbolic discount functions, European Economic Review, 42 (1998), 861-871.  doi: 10.1016/S0014-2921(97)00132-3.  Google Scholar

[17]

P. LallyC. H. M. V. JaarsveldH. W. W. Potts and J. Wardle, How are habits formed: Modelling habit formation in the real world, European Journal of Social Psychology, 40 (2010), 998-1009.  doi: 10.1002/ejsp.674.  Google Scholar

[18]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean variance insurers with state dependent risk aversion, Insurance Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.  Google Scholar

[19]

J. Z. Liu, L. Y. Lin and H. Meng, Optimal consumption, life insurance and investment decision with habit formation, work in progress. Google Scholar

[20]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573-597.   Google Scholar

[21]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[22]

J. Muellbauer, Habits, rationality and myopia in the life cycle consumption function, Annales d'Économie et de Statistique, 9 (1988), 47–70. doi: 10.2307/20075681.  Google Scholar

[23]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 2 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.  Google Scholar

[24]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.  Google Scholar

[25]

S. X. WangX. M. Rong and H. Zhao, Mean-variance problem for an insurer with default risk under a jump-diffusion model, Communications in Statistics-Theory and Methods, 48 (2019), 4421-4249.  doi: 10.1080/03610926.2018.1490432.  Google Scholar

[26]

T. X. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problem, Mathematical Control and Related Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.  Google Scholar

[27]

J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.  Google Scholar

[28]

Y. ZengZ. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496.  doi: 10.3934/jimo.2010.6.483.  Google Scholar

[29]

C. B. Zhang and Z. B. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[30]

Q. ZhaoR. M. Wang and J. Q. Wei, Exponential utility maximization for an insurer with timeinconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.  doi: 10.1016/j.insmatheco.2016.06.003.  Google Scholar

[31]

Q. ZhaoR. M. Wang and J. Q. Wei, Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan, Journal of Industrial and Management Optimization, 12 (2016), 1557-1585.  doi: 10.3934/jimo.2016.12.1557.  Google Scholar

show all references

References:
[1]

G. Ainslie, Special reward: A behavioral theory of impulsiveness and impulse control, Psychological Bulletin, 82 (1975), 463-496.  doi: 10.1037/h0076860.  Google Scholar

[2]

I. Alia, A non-exponential discounting time-inconsistent strochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.  Google Scholar

[3]

O. Azfar, Rationalizing hyperbolic discounting, Journal of Economic Behavior and Organization, 38 (1999), 245-252.  doi: 10.1016/S0167-2681(99)00009-8.  Google Scholar

[4]

T. BjörkA. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[6]

S. M. ChenZ. F. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathmatics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.  Google Scholar

[7]

S. Chen and G. B. Li, Time-inconsistent preferences, consumption, investment and life insurance decisions, Applied Economics Letters, 27 (2020), 392-399.  doi: 10.1080/13504851.2019.1617395.  Google Scholar

[8]

G. M. Constantinides, Habit Formation: A Resolution of the Equity Premium Puzzle, The University of Chicago Press, 98 (1990), 519–543. Available from: https://www.jstor.org/stable/2937698. doi: 10.1086/261693.  Google Scholar

[9]

J. B. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.   Google Scholar

[10]

A. DíazJ. Pijoan-Mas and J. V. Ríos-Rull, Precautionary savings and wealth distribution under habit formation preferences, Journal of Monetary Economics, 50 (2003), 1257-1291.  doi: 10.1016/S0304-3932(03)00078-3.  Google Scholar

[11]

I. EkelandO. Mbodji and T. A. Pirvu, Time-Consistent Portfolio Management, SIAM Journal of Financial Math, 3 (2012), 1-32.  doi: 10.1137/100810034.  Google Scholar

[12]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal On Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.  Google Scholar

[13]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM Journal On Control and Optimization, 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.  Google Scholar

[14]

J. H. HuangX. Li and J. M. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equation in infinite horizon, Mathematical Control and Related Field, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[15]

D. Laibson, Golden eggs and hyperbolic discounting, Quarterly Journal of Economics, 112 (1997), 443-477.   Google Scholar

[16]

D. Laibson, Life-cycle consumption and hyperbolic discount functions, European Economic Review, 42 (1998), 861-871.  doi: 10.1016/S0014-2921(97)00132-3.  Google Scholar

[17]

P. LallyC. H. M. V. JaarsveldH. W. W. Potts and J. Wardle, How are habits formed: Modelling habit formation in the real world, European Journal of Social Psychology, 40 (2010), 998-1009.  doi: 10.1002/ejsp.674.  Google Scholar

[18]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean variance insurers with state dependent risk aversion, Insurance Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.  Google Scholar

[19]

J. Z. Liu, L. Y. Lin and H. Meng, Optimal consumption, life insurance and investment decision with habit formation, work in progress. Google Scholar

[20]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 573-597.   Google Scholar

[21]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[22]

J. Muellbauer, Habits, rationality and myopia in the life cycle consumption function, Annales d'Économie et de Statistique, 9 (1988), 47–70. doi: 10.2307/20075681.  Google Scholar

[23]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 2 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.  Google Scholar

[24]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.  Google Scholar

[25]

S. X. WangX. M. Rong and H. Zhao, Mean-variance problem for an insurer with default risk under a jump-diffusion model, Communications in Statistics-Theory and Methods, 48 (2019), 4421-4249.  doi: 10.1080/03610926.2018.1490432.  Google Scholar

[26]

T. X. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problem, Mathematical Control and Related Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.  Google Scholar

[27]

J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.  Google Scholar

[28]

Y. ZengZ. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496.  doi: 10.3934/jimo.2010.6.483.  Google Scholar

[29]

C. B. Zhang and Z. B. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[30]

Q. ZhaoR. M. Wang and J. Q. Wei, Exponential utility maximization for an insurer with timeinconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.  doi: 10.1016/j.insmatheco.2016.06.003.  Google Scholar

[31]

Q. ZhaoR. M. Wang and J. Q. Wei, Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan, Journal of Industrial and Management Optimization, 12 (2016), 1557-1585.  doi: 10.3934/jimo.2016.12.1557.  Google Scholar

Figure 1.  The impact of $ k $ on $ \bar{A} $ and $ \hat{A} $
Figure 2.  The impact of $ k $ in the degree of inconsistency
Figure 3.  The impact of habit on $ \bar{A} $ and $ \hat{A} $
Figure 4.  The impact of habit on the degree of inconsistency
Figure 5.  Strategy for individual with or without habit
Figure 6.  Example of $ \bar{H}(t)-\hat{H}(t) $ and $ \bar{c}(t)-\hat{c}(t) $
[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[3]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024

[4]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[5]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[11]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[12]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[16]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[17]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[18]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[19]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

[20]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (147)
  • HTML views (466)
  • Cited by (0)

[Back to Top]