• Previous Article
    Stochastic impulse control Problem with state and time dependent cost functions
  • MCRF Home
  • This Issue
  • Next Article
    Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach
December  2020, 10(4): 827-854. doi: 10.3934/mcrf.2020021

On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian

1. 

Dipartimento di Matematica e Applicazioni 'R.Caccioppoli', Università di Napoli Federico Ⅱ - Complesso Universitario di Monte S. Angelo, via Cintia 80126, Napoli, Italy

2. 

Department of Differential Equations, Oles Honchar Dnipro National University, Gagarin av., 72, Dnipro, 49010, Ukraine

3. 

Dipartimento di Matematica e Applicazioni 'R.Caccioppoli', Università di Napoli Federico Ⅱ - Complesso Universitario di Monte S. Angelo, via Cintia 80126, Napoli, Italy

* Corresponding author: Gabriella Zecca

Received  July 2019 Revised  December 2019 Published  March 2020

We study an optimal control problem for a quasi-linear elliptic equation with anisotropic p-Laplace operator in its principal part and $ L^1 $-control in coefficient of the low-order term. We assume that the matrix of anisotropy belongs to BMO-space. Since we cannot expect to have a solution of the state equation in the classical Sobolev space, we introduce a suitable functional class in which we look for solutions and prove existence of optimal pairs using an approximation procedure and compactness arguments in variable spaces.

Citation: Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021
References:
[1]

D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, North–HollaSolid State Physics, 46 (1992), 147-269.   Google Scholar

[2]

M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients, J. of Diff. Equa., 245 (2008), 2038-2054.  doi: 10.1016/j.jde.2008.07.027.  Google Scholar

[3]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, , Birkhäuser, 2005. Google Scholar

[4]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equa. Appl., 7 (2000), 187-199.   Google Scholar

[5]

E. CasasR. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$-cost functional, SIAM Journal on Optimization, 22 (2012), 795-820.  doi: 10.1137/110834366.  Google Scholar

[6]

V. Chiadò Piat and F. Serra Cassano, Some remarks about the density of smooth functions in weighted Sobolev spaces, J. Convex Analysis, 1 (1994), 135-142.   Google Scholar

[7]

M. Chicco and M. Venturino, Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain, Annali di Matematica Pura ed Applicata, 178 (2000), 325-338.  doi: 10.1007/BF02505902.  Google Scholar

[8]

C. D'ApiceU. De MaioP. I. Kogut and R. Manzo, Solvability of an optimal control problem in coefficients for ill-posed elliptic boundary value problems, Electronic Journal of Differential Equations, 2014 (2014), 1-23.   Google Scholar

[9]

C. D'ApiceU. De Maio and O. P. Kogut, Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems, SIAM J. Control Optim., 50 (2012), 1174-1199.  doi: 10.1137/100815761.  Google Scholar

[10]

C. D'ApiceU. De Maio and O. P. Kogut, On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations, Adv. Differential Equations, 15 (2010), 689-720.   Google Scholar

[11]

P. Di Gironimo and G. Zecca, Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO, Submitted. Google Scholar

[12]

P. Drabek, A. Kufner and F. Nicolosi, Non Linear Elliptic Equations, Singular and Degenerate Cases, (Walter de Cruyter, 1997). Google Scholar

[13]

T. DuranteO. P. Kupenko and R. Manzo, On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian, Ricerche di Matematica, 66 (2017), 259-292.  doi: 10.1007/s11587-016-0300-1.  Google Scholar

[14]

F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.  doi: 10.1002/cpa.3160140317.  Google Scholar

[15]

T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I.Existence result, Mathematical Control and Related Fields, 5 (2015), 73-96.  doi: 10.3934/mcrf.2015.5.73.  Google Scholar

[16]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems, Asymptotic Analysis, 98 (2016), 155-188.  doi: 10.3233/ASY-161365.  Google Scholar

[17]

F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265-277.  doi: 10.1007/BF02392268.  Google Scholar

[18]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 2105-2133.  doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[19]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, , Series: Systems and Control, Birkhäuser Verlag, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[20]

P. I. Kogut and G. Leugering, Matrix-valued $L^1$-optimal control in the coefficients of linear elliptic problems, Journal for Analysis and its Applications (ZAA), 32 (2013), 433-456.  doi: 10.4171/ZAA/1493.  Google Scholar

[21]

O. P. Kupenko and R. Manzo, Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), 1-18.  doi: 10.1007/s00030-016-0387-9.  Google Scholar

[22]

O. P. Kupenko and R. Manzo, On optimal controls in coefficients for ill-posed non-linear elliptic dirichlet bounday value problems, Discrete and Continuous Dynamical Systems Journal, series B, (2018). Google Scholar

[23]

G. I. Laptev, Monotonicity conditions for a class of quasilinear differential operators depending on parameters, Math. Notes, 96 (2014), 379-390.   Google Scholar

[24]

S. LeftkimmiatisA. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. on Image Process., 21 (2012), 983-995.  doi: 10.1109/TIP.2011.2168232.  Google Scholar

[25]

O. Levy and R. V. Kohn, Duality relations for non-ohmic composites, with applications to behavior near percolation, J. Statist. Phys., 90 (1998), 159-189.  doi: 10.1023/A:1023251701546.  Google Scholar

[26]

V. G. Maz'ya, On cetrtain integral inequalities for functions of many variables, J. Soviet Math., 1 (1973), 205-234.   Google Scholar

[27]

S. E. Pastukhova, Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems, Sbornik: Mathematics, 198 (2007), 1465-1494.  doi: 10.1070/SM2007v198n10ABEH003892.  Google Scholar

[28]

I. Peral, Multiplicity of Solutions for the $P$-Laplacian, , Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. Google Scholar

[29]

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients, Ann. I.H. Poincaré, 26 (2009), 2001-2024.  doi: 10.1016/j.anihpc.2009.04.005.  Google Scholar

[30]

T. Radice, Regularity result for nondivergence elliptic equations with unbounded coefficients, Diff. Integral Equa., 23 (2010), 989-1000.   Google Scholar

[31]

T. Radice and G. Zecca, Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients, Ricerche Mat., 63 (2014), 355-267.  doi: 10.1007/s11587-014-0202-z.  Google Scholar

[32]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, , Birkhäuser, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[33]

E. Saacson and H. B. Keller, Analysis of Numerical Methods, , Wiley, 1966.  Google Scholar

[34]

M. V. Safonov, Non-divergence elliptic equations of second order with unbounded drift, Nonlinear Partial Diff. Equa. and Related Topics, 229 (2010), 211-232.   Google Scholar

[35]

Ch. Schneider and W. Alt, Regularization of linear-quadratic control problems with $L^1$-control cost, In: Pötzsche C., Heuberger C., Kaltenbacher B., Rendl F. (eds) System Modeling and Optimization. CSMO 2013. IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 443 (2014). Google Scholar

[36]

G. Stampacchia, Èquations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de L'Universite de Montreal, 1966.  Google Scholar

[37]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

[38]

V. V. Zhikov and S. E. Pastukhova, Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Mat. Sb., 199 (2008), 19–52; translation in Sb. Math., 199 (2008), 1751–1782. doi: 10.1070/SM2008v199n12ABEH003980.  Google Scholar

[39]

G. Zecca, An optimal control problem for nonlinear elliptic equations with unbounded coefficients, Discrete and Continous Dynamical Systems, Series B, 24 (2019), 1393-1409.  doi: 10.3934/dcdsb.2019021.  Google Scholar

show all references

References:
[1]

D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, North–HollaSolid State Physics, 46 (1992), 147-269.   Google Scholar

[2]

M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients, J. of Diff. Equa., 245 (2008), 2038-2054.  doi: 10.1016/j.jde.2008.07.027.  Google Scholar

[3]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, , Birkhäuser, 2005. Google Scholar

[4]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equa. Appl., 7 (2000), 187-199.   Google Scholar

[5]

E. CasasR. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$-cost functional, SIAM Journal on Optimization, 22 (2012), 795-820.  doi: 10.1137/110834366.  Google Scholar

[6]

V. Chiadò Piat and F. Serra Cassano, Some remarks about the density of smooth functions in weighted Sobolev spaces, J. Convex Analysis, 1 (1994), 135-142.   Google Scholar

[7]

M. Chicco and M. Venturino, Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain, Annali di Matematica Pura ed Applicata, 178 (2000), 325-338.  doi: 10.1007/BF02505902.  Google Scholar

[8]

C. D'ApiceU. De MaioP. I. Kogut and R. Manzo, Solvability of an optimal control problem in coefficients for ill-posed elliptic boundary value problems, Electronic Journal of Differential Equations, 2014 (2014), 1-23.   Google Scholar

[9]

C. D'ApiceU. De Maio and O. P. Kogut, Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems, SIAM J. Control Optim., 50 (2012), 1174-1199.  doi: 10.1137/100815761.  Google Scholar

[10]

C. D'ApiceU. De Maio and O. P. Kogut, On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations, Adv. Differential Equations, 15 (2010), 689-720.   Google Scholar

[11]

P. Di Gironimo and G. Zecca, Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO, Submitted. Google Scholar

[12]

P. Drabek, A. Kufner and F. Nicolosi, Non Linear Elliptic Equations, Singular and Degenerate Cases, (Walter de Cruyter, 1997). Google Scholar

[13]

T. DuranteO. P. Kupenko and R. Manzo, On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian, Ricerche di Matematica, 66 (2017), 259-292.  doi: 10.1007/s11587-016-0300-1.  Google Scholar

[14]

F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.  doi: 10.1002/cpa.3160140317.  Google Scholar

[15]

T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I.Existence result, Mathematical Control and Related Fields, 5 (2015), 73-96.  doi: 10.3934/mcrf.2015.5.73.  Google Scholar

[16]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems, Asymptotic Analysis, 98 (2016), 155-188.  doi: 10.3233/ASY-161365.  Google Scholar

[17]

F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265-277.  doi: 10.1007/BF02392268.  Google Scholar

[18]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 2105-2133.  doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[19]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, , Series: Systems and Control, Birkhäuser Verlag, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[20]

P. I. Kogut and G. Leugering, Matrix-valued $L^1$-optimal control in the coefficients of linear elliptic problems, Journal for Analysis and its Applications (ZAA), 32 (2013), 433-456.  doi: 10.4171/ZAA/1493.  Google Scholar

[21]

O. P. Kupenko and R. Manzo, Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), 1-18.  doi: 10.1007/s00030-016-0387-9.  Google Scholar

[22]

O. P. Kupenko and R. Manzo, On optimal controls in coefficients for ill-posed non-linear elliptic dirichlet bounday value problems, Discrete and Continuous Dynamical Systems Journal, series B, (2018). Google Scholar

[23]

G. I. Laptev, Monotonicity conditions for a class of quasilinear differential operators depending on parameters, Math. Notes, 96 (2014), 379-390.   Google Scholar

[24]

S. LeftkimmiatisA. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. on Image Process., 21 (2012), 983-995.  doi: 10.1109/TIP.2011.2168232.  Google Scholar

[25]

O. Levy and R. V. Kohn, Duality relations for non-ohmic composites, with applications to behavior near percolation, J. Statist. Phys., 90 (1998), 159-189.  doi: 10.1023/A:1023251701546.  Google Scholar

[26]

V. G. Maz'ya, On cetrtain integral inequalities for functions of many variables, J. Soviet Math., 1 (1973), 205-234.   Google Scholar

[27]

S. E. Pastukhova, Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems, Sbornik: Mathematics, 198 (2007), 1465-1494.  doi: 10.1070/SM2007v198n10ABEH003892.  Google Scholar

[28]

I. Peral, Multiplicity of Solutions for the $P$-Laplacian, , Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. Google Scholar

[29]

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients, Ann. I.H. Poincaré, 26 (2009), 2001-2024.  doi: 10.1016/j.anihpc.2009.04.005.  Google Scholar

[30]

T. Radice, Regularity result for nondivergence elliptic equations with unbounded coefficients, Diff. Integral Equa., 23 (2010), 989-1000.   Google Scholar

[31]

T. Radice and G. Zecca, Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients, Ricerche Mat., 63 (2014), 355-267.  doi: 10.1007/s11587-014-0202-z.  Google Scholar

[32]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, , Birkhäuser, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[33]

E. Saacson and H. B. Keller, Analysis of Numerical Methods, , Wiley, 1966.  Google Scholar

[34]

M. V. Safonov, Non-divergence elliptic equations of second order with unbounded drift, Nonlinear Partial Diff. Equa. and Related Topics, 229 (2010), 211-232.   Google Scholar

[35]

Ch. Schneider and W. Alt, Regularization of linear-quadratic control problems with $L^1$-control cost, In: Pötzsche C., Heuberger C., Kaltenbacher B., Rendl F. (eds) System Modeling and Optimization. CSMO 2013. IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 443 (2014). Google Scholar

[36]

G. Stampacchia, Èquations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de L'Universite de Montreal, 1966.  Google Scholar

[37]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

[38]

V. V. Zhikov and S. E. Pastukhova, Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Mat. Sb., 199 (2008), 19–52; translation in Sb. Math., 199 (2008), 1751–1782. doi: 10.1070/SM2008v199n12ABEH003980.  Google Scholar

[39]

G. Zecca, An optimal control problem for nonlinear elliptic equations with unbounded coefficients, Discrete and Continous Dynamical Systems, Series B, 24 (2019), 1393-1409.  doi: 10.3934/dcdsb.2019021.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 0.857

Article outline

[Back to Top]