• Previous Article
    Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component
  • MCRF Home
  • This Issue
  • Next Article
    Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems
doi: 10.3934/mcrf.2020022

Stochastic impulse control Problem with state and time dependent cost functions

1. 

Equipe. Aide à la decision, Université Ibn Zohr, ENSA, B.P. 1136, Agadir, Maroc

2. 

Department of Mathematical Sciences, Norwegian University of Sciences and Technology, Trondheim, 7491 Norway

Received  August 2019 Revised  November 2019 Published  March 2020

We consider stochastic impulse control problems when the impulses cost functions depend on $ t $ and $ x $. We use the approximation scheme and viscosity solutions approach to show that the value function is a unique viscosity solution for the associated Hamilton-Jacobi-Bellman equation (HJB) partial differential equation (PDE) of stochastic impulse control problems.

Citation: Brahim El Asri, Sehail Mazid. Stochastic impulse control Problem with state and time dependent cost functions. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020022
References:
[1]

L. H. Alvarez, Stochastic forest stand value and optimal timber harvesting, SIAM J. Control Optim., 42 (2004), 1972–1993 (electronic). doi: 10.1137/S0363012901393456.  Google Scholar

[2]

L. H. Alvarez, A class of solvable impulse control problems, Applied Mathematics and Optimization, 49 (2004), 265-295.  doi: 10.1007/s00245-004-0792-z.  Google Scholar

[3]

L. H. Alvarez and J. Lempa, On the optimal stochastic impulse control of linear diffusions, SIAM Journal on Control and Optimization, 47 (2008), 703-732.  doi: 10.1137/060659375.  Google Scholar

[4]

P. Azimzadeh, Zero-sum stochastic differential game with impulses, precommitment and unrestricted cost functions, Applied Math. and Optim, 79 (2019), 483-514.  doi: 10.1007/s00245-017-9445-x.  Google Scholar

[5]

G. Barles and C. Imbert, Second order elliptic integro-differential Equations: Viscosity solutions's theory revisited., Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[6]

C. BelakS. Christensen and F. T. Seifried, A general verification result for stochastic impulse control problems, SIAM J. Control Optim., 55 (2017), 627-649.  doi: 10.1137/16M1082822.  Google Scholar

[7]

A. Bensoussan and J. L. Lions, Impulse Control and Quasivariational Inequalities, , Gauthier-Villars, Montrouge, 1984.  Google Scholar

[8]

B. Bouchard, A stochastic target formulation for optimal switching problems in finite horizon, Stochastics, 81 (2009), 171-197.  doi: 10.1080/17442500802327360.  Google Scholar

[9]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, 10 (2000), 141-156.  doi: 10.1111/1467-9965.00086.  Google Scholar

[10]

Y-S. A. Chen and X. Guo, Impulse control of multidimensional jump diffusions in finite time horison, SIAM J. Control Optim., 51 (2013), 2638-2663.  doi: 10.1137/110854205.  Google Scholar

[11]

M. CrandallH. Ishii and P. L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

J. Dugundji, Topolgy, Boston: Allyn and Bacon, US, 1966.  Google Scholar

[13]

B. El Asri, Deterministic minimax impulse control in finite horizon: The viscosity solution approach., ESAIM: Control Optim. Calc. Var., 19 (2013), 63-77.  doi: 10.1051/cocv/2011200.  Google Scholar

[14]

B. El Asri, The value of a minimax problem involving impulse control, Journal of Dynamics and Games, 6 (20419), 1-17.  doi: 10.3934/jdg.2019001.  Google Scholar

[15]

B. El Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving Impulse controls, Applied Mathematics and Optimization, 2018. doi: 10.1007/s00245-018-9529-2.  Google Scholar

[16]

B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, Journal of Mathematical Analysis and Applications, 474 (2019), 793-813.  doi: 10.1016/j.jmaa.2019.01.040.  Google Scholar

[17]

R. Elie and I. Kharroubi, Probabilistic Representation and Approximation for couples systems of variational inequalities, Statistics and Probability Letters, 80 (2010), 1388-1396.  doi: 10.1016/j.spl.2010.05.003.  Google Scholar

[18]

M. Egami, A direct solution method for stochastic impulse control problems of one-dimensional diffusions, SIAM Journal on Control and Optimization, 47 (2008), 1191-1218.  doi: 10.1137/060669905.  Google Scholar

[19]

S. Hamadène and M. A. Morlais, Viscosity solutions of systems of pdes with interconnected obstacles and multi–modes switching problem, Applied Mathematics and Optimization, 67 (2013), 163–196. doi: 10.1007/s00245-012-9184-y.  Google Scholar

[20]

K. L. HelmesR. H. Stockbridge and C. Zhu, A measure approach for continuous inventory models: Discounted cost criterion, SIAM Journal on Control and Optimization, 53 (2015), 2100-2140.  doi: 10.1137/140972640.  Google Scholar

[21]

K. Ishii, Viscosity solutions of nonlinear second order elliptic PDEs associated with impulse control problems, Funkcial. Ekvac., 36 (1993), 123-141.   Google Scholar

[22]

I. KharroubiJ. MaH. Pham and J. Zhang, Backward SDEs with constrained jumps and quasi-variational inequalities, Ann. Probab., 38 (2010), 794-840.  doi: 10.1214/09-AOP496.  Google Scholar

[23]

R. Korn, Some applications of impulse control in mathematical finance, Math. Methods Oper. Res., 50 (1999), 493-518.  doi: 10.1007/s001860050083.  Google Scholar

[24]

S. M. Lenhart, Viscosity solutions associated with impulse control problems for piecewise deterministic processes, Internat. J. Math. Math. Sci., 12 (1989), 145-157.  doi: 10.1155/S0161171289000207.  Google Scholar

[25]

G. Mundaca and B. Oksendal, Optimal stochastic intervention control with application to the exchange rate, J. Math. Econom., 29 (1998), 225-243.  doi: 10.1016/S0304-4068(97)00013-X.  Google Scholar

[26]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Second edition. Universitext. Springer, Berlin, 2007. doi: 10.1007/978-3-540-69826-5.  Google Scholar

[27]

J. Palczewski and L. Stettner, Impulsive control of portfolios, Appl. Math. Optim., 56 (2007), 67-103.  doi: 10.1007/s00245-007-0880-y.  Google Scholar

[28]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion (Vol. 293)., Springer Science and Business Media, 2013. Google Scholar

[29]

R. C. Seydel, Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions, Stochastic Process. Appl., 119 (2009), 3719-3748.  doi: 10.1016/j.spa.2009.07.004.  Google Scholar

[30]

L. Stettner, Zero-sum Markov games with stopping and impulsive strategies, Appl. Math. Optim., 9 (1982), 1-24.  doi: 10.1007/BF01460115.  Google Scholar

[31]

S. J. Tang and J. M. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach, Stochastics Rep., 45 (1993), 145-176.  doi: 10.1080/17442509308833860.  Google Scholar

[32]

Y. Willassen, The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth, J. Econom. Dynam. Control, 22 (1998), 573-596.  doi: 10.1016/S0165-1889(97)00071-7.  Google Scholar

show all references

References:
[1]

L. H. Alvarez, Stochastic forest stand value and optimal timber harvesting, SIAM J. Control Optim., 42 (2004), 1972–1993 (electronic). doi: 10.1137/S0363012901393456.  Google Scholar

[2]

L. H. Alvarez, A class of solvable impulse control problems, Applied Mathematics and Optimization, 49 (2004), 265-295.  doi: 10.1007/s00245-004-0792-z.  Google Scholar

[3]

L. H. Alvarez and J. Lempa, On the optimal stochastic impulse control of linear diffusions, SIAM Journal on Control and Optimization, 47 (2008), 703-732.  doi: 10.1137/060659375.  Google Scholar

[4]

P. Azimzadeh, Zero-sum stochastic differential game with impulses, precommitment and unrestricted cost functions, Applied Math. and Optim, 79 (2019), 483-514.  doi: 10.1007/s00245-017-9445-x.  Google Scholar

[5]

G. Barles and C. Imbert, Second order elliptic integro-differential Equations: Viscosity solutions's theory revisited., Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[6]

C. BelakS. Christensen and F. T. Seifried, A general verification result for stochastic impulse control problems, SIAM J. Control Optim., 55 (2017), 627-649.  doi: 10.1137/16M1082822.  Google Scholar

[7]

A. Bensoussan and J. L. Lions, Impulse Control and Quasivariational Inequalities, , Gauthier-Villars, Montrouge, 1984.  Google Scholar

[8]

B. Bouchard, A stochastic target formulation for optimal switching problems in finite horizon, Stochastics, 81 (2009), 171-197.  doi: 10.1080/17442500802327360.  Google Scholar

[9]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, 10 (2000), 141-156.  doi: 10.1111/1467-9965.00086.  Google Scholar

[10]

Y-S. A. Chen and X. Guo, Impulse control of multidimensional jump diffusions in finite time horison, SIAM J. Control Optim., 51 (2013), 2638-2663.  doi: 10.1137/110854205.  Google Scholar

[11]

M. CrandallH. Ishii and P. L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

J. Dugundji, Topolgy, Boston: Allyn and Bacon, US, 1966.  Google Scholar

[13]

B. El Asri, Deterministic minimax impulse control in finite horizon: The viscosity solution approach., ESAIM: Control Optim. Calc. Var., 19 (2013), 63-77.  doi: 10.1051/cocv/2011200.  Google Scholar

[14]

B. El Asri, The value of a minimax problem involving impulse control, Journal of Dynamics and Games, 6 (20419), 1-17.  doi: 10.3934/jdg.2019001.  Google Scholar

[15]

B. El Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving Impulse controls, Applied Mathematics and Optimization, 2018. doi: 10.1007/s00245-018-9529-2.  Google Scholar

[16]

B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, Journal of Mathematical Analysis and Applications, 474 (2019), 793-813.  doi: 10.1016/j.jmaa.2019.01.040.  Google Scholar

[17]

R. Elie and I. Kharroubi, Probabilistic Representation and Approximation for couples systems of variational inequalities, Statistics and Probability Letters, 80 (2010), 1388-1396.  doi: 10.1016/j.spl.2010.05.003.  Google Scholar

[18]

M. Egami, A direct solution method for stochastic impulse control problems of one-dimensional diffusions, SIAM Journal on Control and Optimization, 47 (2008), 1191-1218.  doi: 10.1137/060669905.  Google Scholar

[19]

S. Hamadène and M. A. Morlais, Viscosity solutions of systems of pdes with interconnected obstacles and multi–modes switching problem, Applied Mathematics and Optimization, 67 (2013), 163–196. doi: 10.1007/s00245-012-9184-y.  Google Scholar

[20]

K. L. HelmesR. H. Stockbridge and C. Zhu, A measure approach for continuous inventory models: Discounted cost criterion, SIAM Journal on Control and Optimization, 53 (2015), 2100-2140.  doi: 10.1137/140972640.  Google Scholar

[21]

K. Ishii, Viscosity solutions of nonlinear second order elliptic PDEs associated with impulse control problems, Funkcial. Ekvac., 36 (1993), 123-141.   Google Scholar

[22]

I. KharroubiJ. MaH. Pham and J. Zhang, Backward SDEs with constrained jumps and quasi-variational inequalities, Ann. Probab., 38 (2010), 794-840.  doi: 10.1214/09-AOP496.  Google Scholar

[23]

R. Korn, Some applications of impulse control in mathematical finance, Math. Methods Oper. Res., 50 (1999), 493-518.  doi: 10.1007/s001860050083.  Google Scholar

[24]

S. M. Lenhart, Viscosity solutions associated with impulse control problems for piecewise deterministic processes, Internat. J. Math. Math. Sci., 12 (1989), 145-157.  doi: 10.1155/S0161171289000207.  Google Scholar

[25]

G. Mundaca and B. Oksendal, Optimal stochastic intervention control with application to the exchange rate, J. Math. Econom., 29 (1998), 225-243.  doi: 10.1016/S0304-4068(97)00013-X.  Google Scholar

[26]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Second edition. Universitext. Springer, Berlin, 2007. doi: 10.1007/978-3-540-69826-5.  Google Scholar

[27]

J. Palczewski and L. Stettner, Impulsive control of portfolios, Appl. Math. Optim., 56 (2007), 67-103.  doi: 10.1007/s00245-007-0880-y.  Google Scholar

[28]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion (Vol. 293)., Springer Science and Business Media, 2013. Google Scholar

[29]

R. C. Seydel, Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions, Stochastic Process. Appl., 119 (2009), 3719-3748.  doi: 10.1016/j.spa.2009.07.004.  Google Scholar

[30]

L. Stettner, Zero-sum Markov games with stopping and impulsive strategies, Appl. Math. Optim., 9 (1982), 1-24.  doi: 10.1007/BF01460115.  Google Scholar

[31]

S. J. Tang and J. M. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach, Stochastics Rep., 45 (1993), 145-176.  doi: 10.1080/17442509308833860.  Google Scholar

[32]

Y. Willassen, The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth, J. Econom. Dynam. Control, 22 (1998), 573-596.  doi: 10.1016/S0165-1889(97)00071-7.  Google Scholar

[1]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[2]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[3]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[4]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[5]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[6]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[7]

Nobuyuki Kenmochi. Parabolic quasi-variational diffusion problems with gradient constraints. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 423-438. doi: 10.3934/dcdss.2013.6.423

[8]

Laura Scrimali. Mixed behavior network equilibria and quasi-variational inequalities. Journal of Industrial & Management Optimization, 2009, 5 (2) : 363-379. doi: 10.3934/jimo.2009.5.363

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[11]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[12]

Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1791-1801. doi: 10.3934/dcdss.2020105

[13]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[14]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[15]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[16]

Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27

[17]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[18]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[19]

Brahim El Asri. The value of a minimax problem involving impulse control. Journal of Dynamics & Games, 2019, 6 (1) : 1-17. doi: 10.3934/jdg.2019001

[20]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (44)
  • HTML views (153)
  • Cited by (0)

Other articles
by authors

[Back to Top]