
-
Previous Article
Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability
- MCRF Home
- This Issue
-
Next Article
Optimal dividend policy in an insurance company with contagious arrivals of claims
Linear-quadratic-Gaussian mean-field-game with partial observation and common noise
1. | International Center for Decision and Risk Analysis Jindal School of Management, The University of Texas at Dallas and School of Data Sciences, City University of Hong Kong |
2. | Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, Shandong 250100, China |
3. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong |
This paper considers a class of linear-quadratic-Gaussian (LQG) mean-field games (MFGs) with partial observation structure for individual agents. Unlike other literature, there are some special features in our formulation. First, the individual state is driven by some common-noise due to the external factor and the state-average thus becomes a random process instead of a deterministic quantity. Second, the sensor function of individual observation depends on state-average thus the agents are coupled in triple manner: not only in their states and cost functionals, but also through their observation mechanism. The decentralized strategies for individual agents are derived by the Kalman filtering and separation principle. The consistency condition is obtained which is equivalent to the wellposedness of some forward-backward stochastic differential equation (FBSDE) driven by common noise. Finally, the related $ \epsilon $-Nash equilibrium property is verified.
References:
[1] |
M. Bardi,
Explicit solutions of some linear-quadratic mean field games, Netw. Heterog. Media, 7 (2012), 243-261.
doi: 10.3934/nhm.2012.7.243. |
[2] |
A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511526503.![]() ![]() |
[3] |
A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-8508-7. |
[4] |
A. Bensoussan, K. C. J. Sung, S. C. P. Yam and S. P. Yung,
Linear-quadratic mean field games, J. Optim. Theory Appl., 169 (2016), 496-529.
doi: 10.1007/s10957-015-0819-4. |
[5] |
R. Carmona and F. Delarue,
Probabilistic analysis of mean-field games, SIAM J. Control Optim., 51 (2013), 2705-2734.
doi: 10.1137/120883499. |
[6] |
R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications. Ⅱ. Mean field games with common noise and master equations, in Probability Theory and Stochastic Modelling, 84, Springer, Cham, 2018. |
[7] |
R. Carmona, J.-P. Fouque and L.-H. Sun,
Mean field games and systemic risk, Commun. Math. Sci., 13 (2015), 911-933.
doi: 10.4310/CMS.2015.v13.n4.a4. |
[8] |
C. Dogbé,
Modeling crowd dynamics by the mean-field limit approach, Math. Comput. Modelling, 52 (2010), 1506-1520.
doi: 10.1016/j.mcm.2010.06.012. |
[9] |
G. M. Erickson, Differential game methods of advertising competition, European Journal Operational Research, 83 (1995), 431-438. Google Scholar |
[10] |
W. Fleming and W. Rishel, Deterministic and Stochastic Control of Partially Observable Systems, Springer-Verlag, 1975. Google Scholar |
[11] |
O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, 2003, Springer, Berlin, 2011,205–266.
doi: 10.1007/978-3-642-14660-2_3. |
[12] |
A. Haurie and P. Marcotte,
On the relationship between Nash-Cournot and Wardrop equilibria, Networks, 15 (1985), 295-308.
doi: 10.1002/net.3230150303. |
[13] |
G.-D. Hu,
Symplectic Runge-Kutta methods for the linear quadratic regulator problem, Int. J. Math. Anal. (Ruse), 1 (2007), 293-304.
|
[14] |
J. Huang, Y. Hu and T. Nie,
Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints, SIAM J. Control Optim., 56 (2018), 2835-2877.
doi: 10.1137/17M1151420. |
[15] |
J. Huang and S. Wang,
Dynamic optimization of large-population systems with partial information, J. Optim. Theory Appl., 168 (2016), 231-245.
doi: 10.1007/s10957-015-0740-x. |
[16] |
M. Huang,
Large-population LQG games involving a major player: The Nash certainty equivalence principle, SIAM J. Control Optim., 48 (2010), 3318-3353.
doi: 10.1137/080735370. |
[17] |
M. Huang, P. E. Caines and R. P. Malhamé,
Uplink power adjustment in wireless communication systems: A stochastic control analysis, IEEE Trans. Automat. Control, 49 (2004), 1693-1708.
doi: 10.1109/TAC.2004.835388. |
[18] |
M. Huang, P. E. Caines and R. P. Malhamé, Distributed multi-agent decision-making with partial observations: Asymptotic Nash equilibria, Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), (2006), 2725–2730. Google Scholar |
[19] |
M. Huang, P. E. Caines and R. P. Malhamé,
Large-population cost-coupled LQG problems with non-uniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450. |
[20] |
M. Huang, R. P. Malhamé and P. E. Caines,
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.
doi: 10.4310/CIS.2006.v6.n3.a5. |
[21] |
G. Kallianpur, Stochastic filtering theory, in Applications of Mathematics, 13, Springer-Verlag, New York-Berlin, 1980. |
[22] |
A. C. Kizilkale and R. P. Malhamé, Collective target tracking mean field control for Markovian jump-driven models of electric water heating loads, in Control of Complex Systems: Theory and Applications, 2016,559–584. Google Scholar |
[23] |
P. E. Kloeden and E. Platen, Numerical solution of sochastic differential equations, in Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
[24] |
V. E. Lambson,
Self-enforcing collusion in large dynamic markets, J. Econom. Theory, 34 (1984), 282-291.
doi: 10.1016/0022-0531(84)90145-5. |
[25] |
J.-M. Lasry and P.-L. Lions,
Mean field games, Jpn. J. Math., 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[26] |
J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications, in Lecture Notes in Mathematics, 1702, Springer-Verlag, Berlin, 1999. |
[27] |
Z. Ma, D. Callaway and I. Hiskens, Decentralized charging control of large populations of plug-in electric vehicles, IEEE Transactions on Control Systems Technology, 21 (2013), 67-78. Google Scholar |
[28] |
S. L. Nguyen and M. Huang,
Linear-quadratic-Gaussian mixed games with continuum-parameterized minor players, SIAM J. Control Optim., 50 (2012), 2907-2937.
doi: 10.1137/110841217. |
[29] |
M. Nourian, P. E. Caines, R. P. Malhamé and M. Huang,
Nash, social and centralized solutions to consensus problems via mean field control theory, IEEE Trans. Automat. Control, 58 (2013), 639-653.
doi: 10.1109/TAC.2012.2215399. |
[30] |
B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Universitext, $6^th$ edition, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-14394-6. |
[31] |
N. Şen and P. E. Caines,
Nonlinear filtering theory for McKean–Vlasov type stochastic differential equations, SIAM J. Control Optim., 54 (2016), 153-174.
doi: 10.1137/15M1013304. |
[32] |
H. Tembine, Q. Zhu and T. Başar,
Risk-sensitive mean-field games, IEEE Trans. Automat. Control, 59 (2014), 835-850.
doi: 10.1109/TAC.2013.2289711. |
[33] |
G. Wang and Z. Wu,
Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems, J. Math. Anal. Appl., 342 (2008), 1280-1296.
doi: 10.1016/j.jmaa.2007.12.072. |
[34] |
G. Wang, Z. Wu and J. Xiong,
A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information, IEEE Trans. Automat. Control, 60 (2015), 2904-2916.
doi: 10.1109/TAC.2015.2411871. |
[35] |
Y. Weintraub, L. Benkard and B. Van Roy,
Markov perfect industry dynamics with many firms, Econometrica, 76 (2008), 1375-1411.
doi: 10.3982/ECTA6158. |
[36] |
W. M. Wonham., On the separation theorem of stochastic control., SIAM J. Control Optim., 6 (1968), 312–326.
doi: 10.1137/0306023. |
[37] |
H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag,
Synchronization of coupled oscillators is a game, IEEE Trans. Automat. Control, 57 (2012), 920-935.
doi: 10.1109/TAC.2011.2168082. |
[38] |
J. Yong and X. Y. Zhou, Stochastic controls. Hamiltonian systems and HJB equations, in Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
show all references
References:
[1] |
M. Bardi,
Explicit solutions of some linear-quadratic mean field games, Netw. Heterog. Media, 7 (2012), 243-261.
doi: 10.3934/nhm.2012.7.243. |
[2] |
A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511526503.![]() ![]() |
[3] |
A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-8508-7. |
[4] |
A. Bensoussan, K. C. J. Sung, S. C. P. Yam and S. P. Yung,
Linear-quadratic mean field games, J. Optim. Theory Appl., 169 (2016), 496-529.
doi: 10.1007/s10957-015-0819-4. |
[5] |
R. Carmona and F. Delarue,
Probabilistic analysis of mean-field games, SIAM J. Control Optim., 51 (2013), 2705-2734.
doi: 10.1137/120883499. |
[6] |
R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications. Ⅱ. Mean field games with common noise and master equations, in Probability Theory and Stochastic Modelling, 84, Springer, Cham, 2018. |
[7] |
R. Carmona, J.-P. Fouque and L.-H. Sun,
Mean field games and systemic risk, Commun. Math. Sci., 13 (2015), 911-933.
doi: 10.4310/CMS.2015.v13.n4.a4. |
[8] |
C. Dogbé,
Modeling crowd dynamics by the mean-field limit approach, Math. Comput. Modelling, 52 (2010), 1506-1520.
doi: 10.1016/j.mcm.2010.06.012. |
[9] |
G. M. Erickson, Differential game methods of advertising competition, European Journal Operational Research, 83 (1995), 431-438. Google Scholar |
[10] |
W. Fleming and W. Rishel, Deterministic and Stochastic Control of Partially Observable Systems, Springer-Verlag, 1975. Google Scholar |
[11] |
O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, 2003, Springer, Berlin, 2011,205–266.
doi: 10.1007/978-3-642-14660-2_3. |
[12] |
A. Haurie and P. Marcotte,
On the relationship between Nash-Cournot and Wardrop equilibria, Networks, 15 (1985), 295-308.
doi: 10.1002/net.3230150303. |
[13] |
G.-D. Hu,
Symplectic Runge-Kutta methods for the linear quadratic regulator problem, Int. J. Math. Anal. (Ruse), 1 (2007), 293-304.
|
[14] |
J. Huang, Y. Hu and T. Nie,
Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints, SIAM J. Control Optim., 56 (2018), 2835-2877.
doi: 10.1137/17M1151420. |
[15] |
J. Huang and S. Wang,
Dynamic optimization of large-population systems with partial information, J. Optim. Theory Appl., 168 (2016), 231-245.
doi: 10.1007/s10957-015-0740-x. |
[16] |
M. Huang,
Large-population LQG games involving a major player: The Nash certainty equivalence principle, SIAM J. Control Optim., 48 (2010), 3318-3353.
doi: 10.1137/080735370. |
[17] |
M. Huang, P. E. Caines and R. P. Malhamé,
Uplink power adjustment in wireless communication systems: A stochastic control analysis, IEEE Trans. Automat. Control, 49 (2004), 1693-1708.
doi: 10.1109/TAC.2004.835388. |
[18] |
M. Huang, P. E. Caines and R. P. Malhamé, Distributed multi-agent decision-making with partial observations: Asymptotic Nash equilibria, Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), (2006), 2725–2730. Google Scholar |
[19] |
M. Huang, P. E. Caines and R. P. Malhamé,
Large-population cost-coupled LQG problems with non-uniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450. |
[20] |
M. Huang, R. P. Malhamé and P. E. Caines,
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.
doi: 10.4310/CIS.2006.v6.n3.a5. |
[21] |
G. Kallianpur, Stochastic filtering theory, in Applications of Mathematics, 13, Springer-Verlag, New York-Berlin, 1980. |
[22] |
A. C. Kizilkale and R. P. Malhamé, Collective target tracking mean field control for Markovian jump-driven models of electric water heating loads, in Control of Complex Systems: Theory and Applications, 2016,559–584. Google Scholar |
[23] |
P. E. Kloeden and E. Platen, Numerical solution of sochastic differential equations, in Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
[24] |
V. E. Lambson,
Self-enforcing collusion in large dynamic markets, J. Econom. Theory, 34 (1984), 282-291.
doi: 10.1016/0022-0531(84)90145-5. |
[25] |
J.-M. Lasry and P.-L. Lions,
Mean field games, Jpn. J. Math., 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[26] |
J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications, in Lecture Notes in Mathematics, 1702, Springer-Verlag, Berlin, 1999. |
[27] |
Z. Ma, D. Callaway and I. Hiskens, Decentralized charging control of large populations of plug-in electric vehicles, IEEE Transactions on Control Systems Technology, 21 (2013), 67-78. Google Scholar |
[28] |
S. L. Nguyen and M. Huang,
Linear-quadratic-Gaussian mixed games with continuum-parameterized minor players, SIAM J. Control Optim., 50 (2012), 2907-2937.
doi: 10.1137/110841217. |
[29] |
M. Nourian, P. E. Caines, R. P. Malhamé and M. Huang,
Nash, social and centralized solutions to consensus problems via mean field control theory, IEEE Trans. Automat. Control, 58 (2013), 639-653.
doi: 10.1109/TAC.2012.2215399. |
[30] |
B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Universitext, $6^th$ edition, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-14394-6. |
[31] |
N. Şen and P. E. Caines,
Nonlinear filtering theory for McKean–Vlasov type stochastic differential equations, SIAM J. Control Optim., 54 (2016), 153-174.
doi: 10.1137/15M1013304. |
[32] |
H. Tembine, Q. Zhu and T. Başar,
Risk-sensitive mean-field games, IEEE Trans. Automat. Control, 59 (2014), 835-850.
doi: 10.1109/TAC.2013.2289711. |
[33] |
G. Wang and Z. Wu,
Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems, J. Math. Anal. Appl., 342 (2008), 1280-1296.
doi: 10.1016/j.jmaa.2007.12.072. |
[34] |
G. Wang, Z. Wu and J. Xiong,
A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information, IEEE Trans. Automat. Control, 60 (2015), 2904-2916.
doi: 10.1109/TAC.2015.2411871. |
[35] |
Y. Weintraub, L. Benkard and B. Van Roy,
Markov perfect industry dynamics with many firms, Econometrica, 76 (2008), 1375-1411.
doi: 10.3982/ECTA6158. |
[36] |
W. M. Wonham., On the separation theorem of stochastic control., SIAM J. Control Optim., 6 (1968), 312–326.
doi: 10.1137/0306023. |
[37] |
H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag,
Synchronization of coupled oscillators is a game, IEEE Trans. Automat. Control, 57 (2012), 920-935.
doi: 10.1109/TAC.2011.2168082. |
[38] |
J. Yong and X. Y. Zhou, Stochastic controls. Hamiltonian systems and HJB equations, in Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |




[1] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[5] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[6] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[7] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[8] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[9] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[10] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[13] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[14] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[15] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[16] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[17] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[18] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[19] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[20] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]