This paper is concerned with a kind of nonzero-sum differential game of backward doubly stochastic system with delay, in which the state dynamics follows a delayed backward doubly stochastic differential equation (SDE). To deal with the above game problem, it is natural to involve the adjoint equation, which is a kind of anticipated forward doubly SDE. We give the existence and uniqueness of solutions to delayed backward doubly SDE and anticipated forward doubly SDE. We establish a necessary condition in the form of maximum principle with Pontryagin's type for open-loop Nash equilibrium point of this type of game, and then give a verification theorem which is a sufficient condition for Nash equilibrium point. The theoretical results are applied to study a nonzero-sum differential game of linear-quadratic backward doubly stochastic system with delay.
Citation: |
[1] |
K. Bahlali, R. Gatt, B. Mansouri and A. Mtiraoui, Backward doubly SDEs and SPDEs with superlinear growth generators, Stoch. Dyn., 17 (2017), 1-31.
doi: 10.1142/S0219493717500095.![]() ![]() ![]() |
[2] |
V. Bally and A. Matoussi, Weak solutions for SPDEs and backward doubly stochastic differential equations, J. Theoret. Probab., 14 (2001), 125-164.
doi: 10.1023/A:1007825232513.![]() ![]() ![]() |
[3] |
F. Biagini and B. Øksendal, Minimal variance hedging for insider trading, Int. J. Theor. Appl. Finance, 9 (2006), 1351-1375.
doi: 10.1142/S0219024906003998.![]() ![]() ![]() |
[4] |
L. Campi, Some results on quadratic hedging with insider trading, Stochastics, 77 (2005), 327-348.
doi: 10.1080/17442500500183503.![]() ![]() ![]() |
[5] |
L. Chen and Z. Wu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica J. IFAC, 46 (2010), 1074-1080.
doi: 10.1016/j.automatica.2010.03.005.![]() ![]() ![]() |
[6] |
L. Chen and Z. Wu, A type of generalized forward-backward stochastic differential equations and applications, Chin. Ann. Math. Ser. B, 32 (2011), 279-292.
doi: 10.1007/s11401-011-0631-x.![]() ![]() ![]() |
[7] |
L. Chen and Z. Yu, Maximum principle for nonzero-sum stochastic differential game with delays, IEEE Trans. Automat. Control, 60 (2015), 1422-1426.
doi: 10.1109/TAC.2014.2352731.![]() ![]() ![]() |
[8] |
K. Du, J. Huang and Z. Wu, Linear quadratic mean-field-game of backward stochastic differential systems, Math. Control Relat. Fields, 8 (2018), 653-678.
doi: 10.3934/mcrf.2018028.![]() ![]() ![]() |
[9] |
Y. Han, S. Peng and Z. Wu, Maximum principle for backward doubly stochastic control systems with applications, SIAM J. Control Optim., 48 (2010), 4224-4241.
doi: 10.1137/080743561.![]() ![]() ![]() |
[10] |
L. Hu and Y. Ren, Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math., 229 (2009), 230-239.
doi: 10.1016/j.cam.2008.10.027.![]() ![]() ![]() |
[11] |
A. Matoussi, L. Piozin and A. Popier, Stochastic partial differential equations with singular terminal condition, Stochastic Process. Appl., 127 (2017), 831-876.
doi: 10.1016/j.spa.2016.07.002.![]() ![]() ![]() |
[12] |
J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.
doi: 10.2307/1969529.![]() ![]() ![]() |
[13] |
E. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear parabolic SPDEs, Probab. Theory Related Fields, 98 (1994), 209-227.
doi: 10.1007/BF01192514.![]() ![]() ![]() |
[14] |
S. Peng and Y. Shi, A type of time-symmetric forward-backward stochastic differential equations, C. R. Acad. Sci. Paris, 336 (2003), 773-778.
doi: 10.1016/S1631-073X(03)00183-3.![]() ![]() ![]() |
[15] |
Y. Ren, A. Lin and L. Hu, Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math., 223 (2009), 901-907.
doi: 10.1016/j.cam.2008.03.008.![]() ![]() ![]() |
[16] |
J. Shi and G. Wang, A nonzero sum differential game of BSDE with time-delayed generator and applications, IEEE Trans. Automat. Control, 61 (2016), 1959-1964.
doi: 10.1109/TAC.2015.2480335.![]() ![]() ![]() |
[17] |
J. Shi, G. Wang and J. Xiong, Linear-quadratic stochastic Stackelberg differential game with asymmetric information, Sci. China. Inf. Sci., 60 (2017), 092202.
doi: 10.1007/s11432-016-0654-y.![]() ![]() |
[18] |
Y. Shi and Q. Zhu, Partially observed optimal control of forward-backward doubly stochastic systems, ESAIM Control Optim. Calc. Var., 19 (2013), 828-843.
doi: 10.1051/cocv/2012035.![]() ![]() ![]() |
[19] |
J. Von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944.
![]() ![]() |
[20] |
G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero sum differential games of BSDEs with applications, IEEE Trans. Autom. Control, 55 (2010), 1742-1747.
doi: 10.1109/TAC.2010.2048052.![]() ![]() ![]() |
[21] |
G. Wang and Z. Yu, A partial information non-zero sum differential game of backward stochastic differential equations with applications, Automatica J. IFAC, 48 (2012), 342-352.
doi: 10.1016/j.automatica.2011.11.010.![]() ![]() ![]() |
[22] |
T. Wang and Y. Shi, Linear quadratic stochastic integral games and related topics, Sci. China. Math., 58 (2015), 2405-2420.
doi: 10.1007/s11425-015-5026-0.![]() ![]() ![]() |
[23] |
Q. Wei and Z. Yu, Time-inconsistent recursive zero-sum stochastic differential games, Math. Control Relat. Fields, 8 (2018), 1051-1079.
doi: 10.3934/mcrf.2018045.![]() ![]() ![]() |
[24] |
Z. Wu and F. Zhang, BDSDEs with locally monotone coefficients and Sobolev solutions for SPDEs, J. Differential Equations, 251 (2011), 759-784.
doi: 10.1016/j.jde.2011.05.017.![]() ![]() ![]() |
[25] |
J. Xu and Y. Han, Stochastic maximum principle for delayed backward doubly stochastic control systems, J. Nonlinear Sci. Appl., 10 (2017), 215-226.
doi: 10.22436/jnsa.010.01.21.![]() ![]() ![]() |
[26] |
J. Xu, Stochastic maximum principle for delayed backward doubly stochastic control systems and their applications, Int. J. Control, (2018).
doi: 10.1080/00207179.2018.1508850.![]() ![]() |
[27] |
Z. Yu and S. Ji, Linear-quadratic non-zero sum differential game of backward stochstic differential equations, in Proceedings of the 27th Chinese Control Conference, Kunming, Yunnan, (2008), 562–566.
![]() |
[28] |
L. Zhang and Y. Shi, Maximum principle for forward-backward doubly stochastic control systems and applications, ESAIM Control Optim. Calc. Var., 17 (2011), 1174-1197.
doi: 10.1051/cocv/2010042.![]() ![]() ![]() |
[29] |
Q. Zhang and H. Zhao, Stationary solutions of SPDEs and infinite horizon BDSDEs, J. Funct. Anal., 252 (2007), 171-219.
doi: 10.1016/j.jfa.2007.06.019.![]() ![]() ![]() |
[30] |
Q. Zhang and H. Zhao, Stationary solutions of SPDEs and infinite horizon BDSDEs under non-Lipschitz coefficients, J. Differential Equations, 248 (2010), 953-991.
doi: 10.1016/j.jde.2009.12.013.![]() ![]() ![]() |
[31] |
Q. Zhang and H. Zhao, SPDEs with polynomial growth coefficients and the Malliavin calculus method, Stochastic Process. Appl., 123 (2013), 2228-2271.
doi: 10.1016/j.spa.2013.02.004.![]() ![]() ![]() |
[32] |
Q. Zhang and H. Zhao, Backward doubly stochastic differential equations with polynomial growth coefficients, Discrete Contin. Dyn. Syst., 35 (2015), 5285-5315.
doi: 10.3934/dcds.2015.35.5285.![]() ![]() ![]() |
[33] |
Q. Zhu, Y. Shi and X. Gong, Solutions to general forward-backward doubly stochastic differential equations, Appl. Math. Mech., 30 (2009), 517-526.
doi: 10.1007/s10483-009-0412-x.![]() ![]() ![]() |
[34] |
Q. Zhu and Y. Shi, Forward-backward doubly stochastic differential equations and related stochastic partial differential equations, Sci. China Math., 55 (2012), 2517-2534.
doi: 10.1007/s11425-012-4411-1.![]() ![]() ![]() |
[35] |
Q. Zhu and Y. Shi, Optimal control of backward doubly stochastic systems with partial information, IEEE Trans. Automat. Control, 60 (2015), 173-178.
doi: 10.1109/TAC.2014.2322212.![]() ![]() ![]() |