March  2021, 11(1): 95-117. doi: 10.3934/mcrf.2020029

Finite-dimensional controllers for robust regulation of boundary control systems

1. 

Institut für Mathematik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 13/7, A-6020 Innsbruck, Austria

2. 

Mathematics, Faculty of Information Technology and Communication Sciences, Tampere University, PO. Box 692, 33101 Tampere, Finland

* Corresponding author: duy.phan-duc@uibk.ac.at

Received  November 2019 Revised  March 2020 Published  June 2020

We study the robust output regulation of linear boundary control systems by constructing extended systems. The extended systems are established based on solving static differential equations under two new conditions. We first consider the abstract setting and present finite-dimensional reduced order controllers. The controller design is then used for particular PDE models: high-dimensional parabolic equations and beam equations with Kelvin-Voigt damping. Numerical examples will be presented using Finite Element Method.

Citation: Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029
References:
[1]

M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system, ESAIM Control Optim. Calc. Var., 15 (2009), 934-968.  doi: 10.1051/cocv:2008059.  Google Scholar

[2]

H. T. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J. Control Optim., 22 (1984), 684-698.  doi: 10.1137/0322043.  Google Scholar

[3]

R. F. Curtain and H. Zwart, An Introduction to Infinite–Dimensional Linear Systems Theory. Texts in Applied Mathematics, Vol. 21, Springer-Verlag New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[4]

B.-Z. GuoH.-C. ZhouA. S. AL-FhaidA. M. M. Younas and A. Asiri, Stabilization of Euler-Bernoulli Beam Equation with Boundary Moment Control and Disturbance by Active Disturbance Rejection Control and Sliding Mode Control Approaches, J. Dyn. Control Syst., 20 (2014), 539-558.  doi: 10.1007/s10883-014-9241-8.  Google Scholar

[5]

T. Hämäläinen and S. Pohjolainen, Robust regulation for exponentially stable boundary control systems in Hilbert space, in Proceedings of the 8th IEEE International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, 2002,171–178. Google Scholar

[6]

T. Hämäläinen and S. Pohjolainen, Robust regulation of distributed parameter systems with infinite-dimensional exosystems, SIAM J. Control Optim., 48 (2010), 4846-4873.  doi: 10.1137/090757976.  Google Scholar

[7]

E. Immonen, On the internal model structure for infinite-dimensional systems: Two common controller types and repetitive control, SIAM J. Control Optim., 45 (2007), 2065-2093.  doi: 10.1137/050638916.  Google Scholar

[8]

K. Ito and K. Morris, An approximation theory of solutions to operator Riccati equations for $H^\infty$ control, SIAM J. Control Optim., 36 (1998), 82-99.  doi: 10.1137/S0363012994274422.  Google Scholar

[9]

H. Logemann and S. Townley, Low-gain control of uncertain regular linear systems, SIAM J. Control Optim., 35 (1997), 78-116.  doi: 10.1137/S0363012994275920.  Google Scholar

[10]

L. Paunonen and D. Phan, Reduced order controller design for robust output regulation, IEEE Transactions on Automatic Control, (2019), 1–1. doi: 10.1109/TAC.2019.2930185.  Google Scholar

[11]

L. Paunonen, Controller design for robust output regulation of regular linear systems, IEEE Trans. Automat. Control, 61 (2016), 2974-2986.  doi: 10.1109/TAC.2015.2509439.  Google Scholar

[12]

D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Systems, 30 (2018), Art. 11, 50 pp. doi: 10.1007/s00498-018-0218-0.  Google Scholar

[13]

R. Rebarber and G. Weiss, Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica J. IFAC, 39 (2003), 1555-1569.  doi: 10.1016/S0005-1098(03)00192-4.  Google Scholar

[14]

S. S. Rodrigues, Boundary observability inequalities for the 3D Oseen-Stokes system and applications, ESAIM Control Optim. Calc. Var., 21 (2015), 723-756.  doi: 10.1051/cocv/2014045.  Google Scholar

[15]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.  Google Scholar

[16]

O. Staffans, Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications, Vol. 103, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511543197.  Google Scholar

[17]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1]

M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system, ESAIM Control Optim. Calc. Var., 15 (2009), 934-968.  doi: 10.1051/cocv:2008059.  Google Scholar

[2]

H. T. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J. Control Optim., 22 (1984), 684-698.  doi: 10.1137/0322043.  Google Scholar

[3]

R. F. Curtain and H. Zwart, An Introduction to Infinite–Dimensional Linear Systems Theory. Texts in Applied Mathematics, Vol. 21, Springer-Verlag New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[4]

B.-Z. GuoH.-C. ZhouA. S. AL-FhaidA. M. M. Younas and A. Asiri, Stabilization of Euler-Bernoulli Beam Equation with Boundary Moment Control and Disturbance by Active Disturbance Rejection Control and Sliding Mode Control Approaches, J. Dyn. Control Syst., 20 (2014), 539-558.  doi: 10.1007/s10883-014-9241-8.  Google Scholar

[5]

T. Hämäläinen and S. Pohjolainen, Robust regulation for exponentially stable boundary control systems in Hilbert space, in Proceedings of the 8th IEEE International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, 2002,171–178. Google Scholar

[6]

T. Hämäläinen and S. Pohjolainen, Robust regulation of distributed parameter systems with infinite-dimensional exosystems, SIAM J. Control Optim., 48 (2010), 4846-4873.  doi: 10.1137/090757976.  Google Scholar

[7]

E. Immonen, On the internal model structure for infinite-dimensional systems: Two common controller types and repetitive control, SIAM J. Control Optim., 45 (2007), 2065-2093.  doi: 10.1137/050638916.  Google Scholar

[8]

K. Ito and K. Morris, An approximation theory of solutions to operator Riccati equations for $H^\infty$ control, SIAM J. Control Optim., 36 (1998), 82-99.  doi: 10.1137/S0363012994274422.  Google Scholar

[9]

H. Logemann and S. Townley, Low-gain control of uncertain regular linear systems, SIAM J. Control Optim., 35 (1997), 78-116.  doi: 10.1137/S0363012994275920.  Google Scholar

[10]

L. Paunonen and D. Phan, Reduced order controller design for robust output regulation, IEEE Transactions on Automatic Control, (2019), 1–1. doi: 10.1109/TAC.2019.2930185.  Google Scholar

[11]

L. Paunonen, Controller design for robust output regulation of regular linear systems, IEEE Trans. Automat. Control, 61 (2016), 2974-2986.  doi: 10.1109/TAC.2015.2509439.  Google Scholar

[12]

D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Systems, 30 (2018), Art. 11, 50 pp. doi: 10.1007/s00498-018-0218-0.  Google Scholar

[13]

R. Rebarber and G. Weiss, Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica J. IFAC, 39 (2003), 1555-1569.  doi: 10.1016/S0005-1098(03)00192-4.  Google Scholar

[14]

S. S. Rodrigues, Boundary observability inequalities for the 3D Oseen-Stokes system and applications, ESAIM Control Optim. Calc. Var., 21 (2015), 723-756.  doi: 10.1051/cocv/2014045.  Google Scholar

[15]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.  Google Scholar

[16]

O. Staffans, Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications, Vol. 103, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511543197.  Google Scholar

[17]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

Figure 1.  Boundary controls located on red segments and regions of observations (blue)
Figure 2.  Two extensions of boundary actuators
Figure 3.  Output tracking of the boundary control of the 2D parabolic equation
Figure 4.  Hankel singular values
Figure 5.  Solutions of ODEs
Figure 6.  Output tracking of the boundary controlled beam equation with two different extensions
[1]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[2]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[3]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[4]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[5]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[6]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[7]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[9]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[10]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[11]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[12]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[13]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[14]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[15]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[16]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[17]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[18]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[19]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[20]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (95)
  • HTML views (255)
  • Cited by (0)

Other articles
by authors

[Back to Top]