Advanced Search
Article Contents
Article Contents

Finite-dimensional controllers for robust regulation of boundary control systems

Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • We study the robust output regulation of linear boundary control systems by constructing extended systems. The extended systems are established based on solving static differential equations under two new conditions. We first consider the abstract setting and present finite-dimensional reduced order controllers. The controller design is then used for particular PDE models: high-dimensional parabolic equations and beam equations with Kelvin-Voigt damping. Numerical examples will be presented using Finite Element Method.

    Mathematics Subject Classification: Primary: 93C05, 93B52, 93D09; Secondary: 35K10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Boundary controls located on red segments and regions of observations (blue)

    Figure 2.  Two extensions of boundary actuators

    Figure 3.  Output tracking of the boundary control of the 2D parabolic equation

    Figure 4.  Hankel singular values

    Figure 5.  Solutions of ODEs

    Figure 6.  Output tracking of the boundary controlled beam equation with two different extensions

  • [1] M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system, ESAIM Control Optim. Calc. Var., 15 (2009), 934-968.  doi: 10.1051/cocv:2008059.
    [2] H. T. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J. Control Optim., 22 (1984), 684-698.  doi: 10.1137/0322043.
    [3] R. F. Curtain and H. Zwart, An Introduction to Infinite–Dimensional Linear Systems Theory. Texts in Applied Mathematics, Vol. 21, Springer-Verlag New York, 1995. doi: 10.1007/978-1-4612-4224-6.
    [4] B.-Z. GuoH.-C. ZhouA. S. AL-FhaidA. M. M. Younas and A. Asiri, Stabilization of Euler-Bernoulli Beam Equation with Boundary Moment Control and Disturbance by Active Disturbance Rejection Control and Sliding Mode Control Approaches, J. Dyn. Control Syst., 20 (2014), 539-558.  doi: 10.1007/s10883-014-9241-8.
    [5] T. Hämäläinen and S. Pohjolainen, Robust regulation for exponentially stable boundary control systems in Hilbert space, in Proceedings of the 8th IEEE International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, 2002,171–178.
    [6] T. Hämäläinen and S. Pohjolainen, Robust regulation of distributed parameter systems with infinite-dimensional exosystems, SIAM J. Control Optim., 48 (2010), 4846-4873.  doi: 10.1137/090757976.
    [7] E. Immonen, On the internal model structure for infinite-dimensional systems: Two common controller types and repetitive control, SIAM J. Control Optim., 45 (2007), 2065-2093.  doi: 10.1137/050638916.
    [8] K. Ito and K. Morris, An approximation theory of solutions to operator Riccati equations for $H^\infty$ control, SIAM J. Control Optim., 36 (1998), 82-99.  doi: 10.1137/S0363012994274422.
    [9] H. Logemann and S. Townley, Low-gain control of uncertain regular linear systems, SIAM J. Control Optim., 35 (1997), 78-116.  doi: 10.1137/S0363012994275920.
    [10] L. Paunonen and D. Phan, Reduced order controller design for robust output regulation, IEEE Transactions on Automatic Control, (2019), 1–1. doi: 10.1109/TAC.2019.2930185.
    [11] L. Paunonen, Controller design for robust output regulation of regular linear systems, IEEE Trans. Automat. Control, 61 (2016), 2974-2986.  doi: 10.1109/TAC.2015.2509439.
    [12] D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Systems, 30 (2018), Art. 11, 50 pp. doi: 10.1007/s00498-018-0218-0.
    [13] R. Rebarber and G. Weiss, Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica J. IFAC, 39 (2003), 1555-1569.  doi: 10.1016/S0005-1098(03)00192-4.
    [14] S. S. Rodrigues, Boundary observability inequalities for the 3D Oseen-Stokes system and applications, ESAIM Control Optim. Calc. Var., 21 (2015), 723-756.  doi: 10.1051/cocv/2014045.
    [15] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.
    [16] O. Staffans, Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications, Vol. 103, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511543197.
    [17] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
  • 加载中



Article Metrics

HTML views(484) PDF downloads(298) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint