-
Previous Article
Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport
- MCRF Home
- This Issue
-
Next Article
Finite-dimensional controllers for robust regulation of boundary control systems
Optimal design problems governed by the nonlocal $ p $-Laplacian equation
1. | Universidad de Castilla-La Mancha, Departamento de Matemáticas and Escuela de Ingeniería Industrial y Aerospacial, Avenida Carlos Ⅲ s/n, Real Fábrica de Armas, 45071 Toledo (ESPAÑA) |
2. | Universidad de Castilla-La Mancha, Departamento de Matemáticas and Facultad de CC del Medioambiente y Bioquímica, Avenida Carlos Ⅲ s/n, Real Fábrica de Armas, 45071 Toledo (ESPAÑA)Universidad de Castilla-La Mancha, Departamento de Matemáticas and Facultad de CC del Medioambiente y Bioquímica, Avenida Carlos Ⅲ s/n, Real Fábrica de Armas, 45071 Toledo (ESPAÑA) |
In the present work, a nonlocal optimal design model has been considered as an approximation of the corresponding classical or local optimal design problem. The new model is driven by the nonlocal $ p $-Laplacian equation, the design is the diffusion coefficient and the cost functional belongs to a broad class of nonlocal functional integrals. The purpose of this paper is to prove the existence of an optimal design for the new model. This work is complemented by showing that the limit of the nonlocal $ p $-Laplacian state equation converges towards the corresponding local problem. Also, as in the paper by F. Andrés and J. Muñoz [J. Math. Anal. Appl. 429:288– 310], the convergence of the nonlocal optimal design problem toward the local version is studied. This task is successfully performed in two different cases: when the cost to minimize is the compliance functional, and when an additional nonlocal constraint on the design is assumed.
References:
[1] |
G. Allaire, Shape Optimization by the Homogenization Method, Springer Verlag, New York, 2002. |
[2] |
B. Aksoylu and T. Mengesha,
Results on nonlocal boundary value problems, Numer. Funct. Anal. Optim., 31 (2010), 1301-1317.
doi: 10.1080/01630563.2010.519136. |
[3] |
F. Andrés and J. Muñoz,
A type of nonlocal elliptic problem: Existence and approximation through a Galerkin-Fourier method, SIAM J. Math. Anal., 47 (2015), 498-525.
doi: 10.1137/140963066. |
[4] |
F. Andrés and J. Muñoz,
Nonlocal optimal design: A new perspective about the approximation of solutions in optimal design, J. Math. Anal. Appl., 429 (2015), 288-310.
doi: 10.1016/j.jmaa.2015.04.026. |
[5] |
F. Andrés and J. Muñoz,
On the convergence of a class of nonlocal elliptic equations and related optimal design problems, J. Optim. Theory Appl., 172 (2017), 33-55.
doi: 10.1007/s10957-016-1021-z. |
[6] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, American Mathematical Society, Providence, 2010.
doi: 10.1090/surv/165. |
[7] |
F. Andreu, J. D. Rossi and J. J. Toledo-Melero,
Local and nonlocal weighted p-Laplacian evolution equations with Neumann boundary conditions, Publ. Mat., 55 (2011), 27-66.
doi: 10.5565/PUBLMAT\_55111\_03. |
[8] |
O. Bakunin, Turbulence and Diffusion: Scaling Versus Equations, 1$^st$ edition, Springer Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-68222-6. |
[9] |
J. C. Bellido and A. Egrafov, A simple characterization of $H$-convergence for a class of nonlocal problems, Revista Matemática Complutense, (2020).
doi: 10.1007/s13163-020-00349-9. |
[10] |
J. C. Bellido and C. Mora-Corral,
Existence for nonlocal variational problems in peridynamics, SIAM J. Math. Anal., 46 (2014), 890-916.
doi: 10.1137/130911548. |
[11] |
J. Fernández-Bonder, A. Ritorto and A. M. Salort,
$H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Maht. Anal., 49 (2017), 2387-2408.
doi: 10.1137/16M1080215. |
[12] |
J. Fernández-Bonder and J. F. Spedaletti,
Some nonlocal optimal design problems, J. Math. Anal. Appl., 459 (2018), 906-931.
doi: 10.1016/j.jmaa.2017.11.015. |
[13] |
M. Bonforte, Y. Sire and J. L. Vázquez,
Existence, uniqueness and asymptotic behavior for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.
doi: 10.3934/dcds.2015.35.5725. |
[14] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, (A volume in honour of A. Benssoussan's 60th birthday) (Eds. J. L. Menldi et al.), IOS, Amsterdam, (2001), 439–455. |
[15] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer International Publisher, 2016.
doi: 10.1007/978-3-319-28739-3. |
[16] |
B. A. Carreras, V. E. Lynch and G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracer in plasma turbulence models, Phys. Plasmas, 8 (2001), 113-147. Google Scholar |
[17] |
J. Cea and K. Malanowski,
An example of a max-min problem in partial differential equations, SIAM J. Control, 8 (1970), 305-316.
doi: 10.1137/0308021. |
[18] |
A. Cherkaev and R. Kohn, Topics in Mathematical Modeling of Composite Materials, Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-3-319-97184-1. |
[19] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[20] |
M. C. Delfour and J. P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, Advances in design and control, 22, SIAM, 2011.
doi: 10.1137/1.9780898719826. |
[21] |
M. D'Elia and M. Gunzburger,
Optimal distributed control of nonlocal steady diffusion problems, SIAM. J. Control Optim., 52 (2014), 243-273.
doi: 10.1137/120897857. |
[22] |
M. D'Elia and M. Gunzburger,
Identification of the diffusion parameter in nonlocal steady diffusion problems, Appl. Math. Optim., 73 (2016), 227-249.
doi: 10.1007/s00245-015-9300-x. |
[23] |
M. D'Elia, Q. Du and M. Gunzburger, Recent progress in mathematical and computational aspects of Peridynamics,, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures (Ed. G. voyiadjis), Springer, (2018), 1–26.
doi: 10.1007/978-3-319-22977-5\_30-1. |
[24] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[25] |
Q. Du, M. D. Gunzburger, R. B. Lehoucq and K. Zhou,
Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.
doi: 10.1137/110833294. |
[26] |
M. Felsinger, M. Kassmann and P. Voigt,
The Dirichlet problem for nonlocal operators, Mathematische Zeitschrift, 279 (2015), 779-809.
doi: 10.1007/s00209-014-1394-3. |
[27] |
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, 3rd edition, Springer-Verlag, Berlin, 2004. |
[28] |
M. Gunzburguer, N. Jiang and F. Xu,
Anaysis and approximation of a fractional Laplacian-based closure model for turbulent flows and its connection to Richardson Pair Dispersion, Comput. Math. with Appl., 75 (2018), 1973-2001.
doi: 10.1016/j.camwa.2017.06.035. |
[29] |
O. Hernández-Lerma and J. B. Lasserre,
Fatou's lemma and Lebesgue's convergence theorem for measures, J. Appl. Math. Stochastic Anal., 13 (2000), 137-146.
doi: 10.1155/S1048953300000150. |
[30] |
B. Hinds and P. Radu,
Dirichlet's principle and wellposedness of solutions for a nonlocal p-Laplacian system, Appl. Math. Comput., 219 (2012), 1411-1419.
doi: 10.1016/j.amc.2012.07.045. |
[31] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[32] |
J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero,
Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.
doi: 10.1016/j.matpur.2016.02.004. |
[33] |
T. Mengesha and Q. Du,
Characterization of function spaces of vector fields and an application in nonlinear peridynamics, Nonlinear Anal., 140 (2016), 82-111.
doi: 10.1016/j.na.2016.02.024. |
[34] |
T. Mengesha and Q. Du,
On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.
doi: 10.1088/0951-7715/28/11/3999. |
[35] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[36] |
R. Metzler and J. Klafter,
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37 (2004), 161-208.
|
[37] |
J. Muñoz, Generalized Ponce's inequality, preprint, arXiv: 1909.04146v2. Google Scholar |
[38] |
S. P. Neuman and D. M. Tartakosky,
Perspective on theories of non-fickian transport in heterogeneous media, Adv. in Water Resources, 32 (2009), 670-680.
doi: 10.1016/j.advwatres.2008.08.005. |
[39] |
A. C. Ponce,
An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), 1-15.
doi: 10.4171/JEMS/1. |
[40] |
A. C. Ponce,
A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z. |
[41] |
F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publications, New York, 1990. |
[42] |
H. L. Royden, Real Analysis, 3$^rd$ edition, Macmillan Publishing Company, New York, 1988. |
[43] |
M. F. Shlesinger, B. J. West and J. Klafter,
Lévy dynamics of enhanced diffsion: Application to turbulence, Phys Rev. Lett., 58 (1987), 1100-1103.
doi: 10.1103/PhysRevLett.58.1100. |
[44] |
J. L. Vázquez, Nonlinear diffusion with fractional laplaian opertors,, in Nonlinear Partial Differential Equations: The Abel Symposium 2010 (eds. H. Holden, K. H. Karlse), Springer, (2012), 271–298.
doi: 10.1007/978-3-642-25361-4\_15. |
[45] |
J. L. Vázquez,
Recent porgress in the theory on nonlinear diffusion with fractional Laplacian operators, Dis. Cont. Dyn. Syst., 7 (2014), 857-885.
doi: 10.3934/dcdss.2014.7.857. |
[46] |
J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion,, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (eds. M. Bonforte, G. Grillo), Lecture Notes in Mathematics, 2186, Springer Cham, (2017), 205–278.
doi: 10.1007/978-3-319-61494-6\_5. |
[47] |
K. Zhou and Q. Du,
Mathematical and numerical analysis of linear perydynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48 (2010), 1759-1780.
doi: 10.1137/090781267. |
show all references
References:
[1] |
G. Allaire, Shape Optimization by the Homogenization Method, Springer Verlag, New York, 2002. |
[2] |
B. Aksoylu and T. Mengesha,
Results on nonlocal boundary value problems, Numer. Funct. Anal. Optim., 31 (2010), 1301-1317.
doi: 10.1080/01630563.2010.519136. |
[3] |
F. Andrés and J. Muñoz,
A type of nonlocal elliptic problem: Existence and approximation through a Galerkin-Fourier method, SIAM J. Math. Anal., 47 (2015), 498-525.
doi: 10.1137/140963066. |
[4] |
F. Andrés and J. Muñoz,
Nonlocal optimal design: A new perspective about the approximation of solutions in optimal design, J. Math. Anal. Appl., 429 (2015), 288-310.
doi: 10.1016/j.jmaa.2015.04.026. |
[5] |
F. Andrés and J. Muñoz,
On the convergence of a class of nonlocal elliptic equations and related optimal design problems, J. Optim. Theory Appl., 172 (2017), 33-55.
doi: 10.1007/s10957-016-1021-z. |
[6] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, American Mathematical Society, Providence, 2010.
doi: 10.1090/surv/165. |
[7] |
F. Andreu, J. D. Rossi and J. J. Toledo-Melero,
Local and nonlocal weighted p-Laplacian evolution equations with Neumann boundary conditions, Publ. Mat., 55 (2011), 27-66.
doi: 10.5565/PUBLMAT\_55111\_03. |
[8] |
O. Bakunin, Turbulence and Diffusion: Scaling Versus Equations, 1$^st$ edition, Springer Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-68222-6. |
[9] |
J. C. Bellido and A. Egrafov, A simple characterization of $H$-convergence for a class of nonlocal problems, Revista Matemática Complutense, (2020).
doi: 10.1007/s13163-020-00349-9. |
[10] |
J. C. Bellido and C. Mora-Corral,
Existence for nonlocal variational problems in peridynamics, SIAM J. Math. Anal., 46 (2014), 890-916.
doi: 10.1137/130911548. |
[11] |
J. Fernández-Bonder, A. Ritorto and A. M. Salort,
$H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Maht. Anal., 49 (2017), 2387-2408.
doi: 10.1137/16M1080215. |
[12] |
J. Fernández-Bonder and J. F. Spedaletti,
Some nonlocal optimal design problems, J. Math. Anal. Appl., 459 (2018), 906-931.
doi: 10.1016/j.jmaa.2017.11.015. |
[13] |
M. Bonforte, Y. Sire and J. L. Vázquez,
Existence, uniqueness and asymptotic behavior for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.
doi: 10.3934/dcds.2015.35.5725. |
[14] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, (A volume in honour of A. Benssoussan's 60th birthday) (Eds. J. L. Menldi et al.), IOS, Amsterdam, (2001), 439–455. |
[15] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer International Publisher, 2016.
doi: 10.1007/978-3-319-28739-3. |
[16] |
B. A. Carreras, V. E. Lynch and G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracer in plasma turbulence models, Phys. Plasmas, 8 (2001), 113-147. Google Scholar |
[17] |
J. Cea and K. Malanowski,
An example of a max-min problem in partial differential equations, SIAM J. Control, 8 (1970), 305-316.
doi: 10.1137/0308021. |
[18] |
A. Cherkaev and R. Kohn, Topics in Mathematical Modeling of Composite Materials, Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-3-319-97184-1. |
[19] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[20] |
M. C. Delfour and J. P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, Advances in design and control, 22, SIAM, 2011.
doi: 10.1137/1.9780898719826. |
[21] |
M. D'Elia and M. Gunzburger,
Optimal distributed control of nonlocal steady diffusion problems, SIAM. J. Control Optim., 52 (2014), 243-273.
doi: 10.1137/120897857. |
[22] |
M. D'Elia and M. Gunzburger,
Identification of the diffusion parameter in nonlocal steady diffusion problems, Appl. Math. Optim., 73 (2016), 227-249.
doi: 10.1007/s00245-015-9300-x. |
[23] |
M. D'Elia, Q. Du and M. Gunzburger, Recent progress in mathematical and computational aspects of Peridynamics,, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures (Ed. G. voyiadjis), Springer, (2018), 1–26.
doi: 10.1007/978-3-319-22977-5\_30-1. |
[24] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[25] |
Q. Du, M. D. Gunzburger, R. B. Lehoucq and K. Zhou,
Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.
doi: 10.1137/110833294. |
[26] |
M. Felsinger, M. Kassmann and P. Voigt,
The Dirichlet problem for nonlocal operators, Mathematische Zeitschrift, 279 (2015), 779-809.
doi: 10.1007/s00209-014-1394-3. |
[27] |
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, 3rd edition, Springer-Verlag, Berlin, 2004. |
[28] |
M. Gunzburguer, N. Jiang and F. Xu,
Anaysis and approximation of a fractional Laplacian-based closure model for turbulent flows and its connection to Richardson Pair Dispersion, Comput. Math. with Appl., 75 (2018), 1973-2001.
doi: 10.1016/j.camwa.2017.06.035. |
[29] |
O. Hernández-Lerma and J. B. Lasserre,
Fatou's lemma and Lebesgue's convergence theorem for measures, J. Appl. Math. Stochastic Anal., 13 (2000), 137-146.
doi: 10.1155/S1048953300000150. |
[30] |
B. Hinds and P. Radu,
Dirichlet's principle and wellposedness of solutions for a nonlocal p-Laplacian system, Appl. Math. Comput., 219 (2012), 1411-1419.
doi: 10.1016/j.amc.2012.07.045. |
[31] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[32] |
J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero,
Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.
doi: 10.1016/j.matpur.2016.02.004. |
[33] |
T. Mengesha and Q. Du,
Characterization of function spaces of vector fields and an application in nonlinear peridynamics, Nonlinear Anal., 140 (2016), 82-111.
doi: 10.1016/j.na.2016.02.024. |
[34] |
T. Mengesha and Q. Du,
On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.
doi: 10.1088/0951-7715/28/11/3999. |
[35] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[36] |
R. Metzler and J. Klafter,
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37 (2004), 161-208.
|
[37] |
J. Muñoz, Generalized Ponce's inequality, preprint, arXiv: 1909.04146v2. Google Scholar |
[38] |
S. P. Neuman and D. M. Tartakosky,
Perspective on theories of non-fickian transport in heterogeneous media, Adv. in Water Resources, 32 (2009), 670-680.
doi: 10.1016/j.advwatres.2008.08.005. |
[39] |
A. C. Ponce,
An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), 1-15.
doi: 10.4171/JEMS/1. |
[40] |
A. C. Ponce,
A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z. |
[41] |
F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publications, New York, 1990. |
[42] |
H. L. Royden, Real Analysis, 3$^rd$ edition, Macmillan Publishing Company, New York, 1988. |
[43] |
M. F. Shlesinger, B. J. West and J. Klafter,
Lévy dynamics of enhanced diffsion: Application to turbulence, Phys Rev. Lett., 58 (1987), 1100-1103.
doi: 10.1103/PhysRevLett.58.1100. |
[44] |
J. L. Vázquez, Nonlinear diffusion with fractional laplaian opertors,, in Nonlinear Partial Differential Equations: The Abel Symposium 2010 (eds. H. Holden, K. H. Karlse), Springer, (2012), 271–298.
doi: 10.1007/978-3-642-25361-4\_15. |
[45] |
J. L. Vázquez,
Recent porgress in the theory on nonlinear diffusion with fractional Laplacian operators, Dis. Cont. Dyn. Syst., 7 (2014), 857-885.
doi: 10.3934/dcdss.2014.7.857. |
[46] |
J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion,, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (eds. M. Bonforte, G. Grillo), Lecture Notes in Mathematics, 2186, Springer Cham, (2017), 205–278.
doi: 10.1007/978-3-319-61494-6\_5. |
[47] |
K. Zhou and Q. Du,
Mathematical and numerical analysis of linear perydynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48 (2010), 1759-1780.
doi: 10.1137/090781267. |
[1] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[2] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[3] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[4] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[5] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[6] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[7] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[8] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[9] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[10] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[11] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[12] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[13] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[14] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[15] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[16] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[17] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[18] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[19] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[20] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]