• Previous Article
    On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems
  • MCRF Home
  • This Issue
  • Next Article
    Local contact sub-Finslerian geometry for maximum norms in dimension 3
doi: 10.3934/mcrf.2020031

Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport

Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy

Received  August 2019 Revised  March 2020 Published  June 2020

The objective of the paper is to contribute to the theory of error-based control systems on Riemannian manifolds. The present study focuses on system where the control field influences the covariant derivative of a control path. In order to define error terms in such systems, it is necessary to compare tangent vectors at different points using parallel transport and to understand how the covariant derivative of a vector field along a path changes after such field gets parallely transported to a different curve. It turns out that such analysis relies on a specific map, termed principal pushforward map. The present paper aims at contributing to the algebraic theory of the principal pushforward map and of its relationship with the curvature endomorphism of a state manifold.

Citation: Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020031
References:
[1]

W. Ambrose and I. M. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443.  doi: 10.1090/S0002-9947-1953-0063739-1.  Google Scholar

[2]

R. Anirudh, V. Venkataraman and P. Turaga, A generalized Lyapunov feature for dynamical systems on Riemannian manifolds,, Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories, (2015), 4.1–4.10. doi: 10.5244/C.29.DIFFCV.4.  Google Scholar

[3]

A. Bejenaru and C. Udrişte, Multivariate optimal control with payoffs defined by submanifold integrals, Symmetry, 11 (2019), 893. doi: 10.3390/sym11070893.  Google Scholar

[4]

F. BulloR. M. Murray and A. Sarti, Control on the sphere and reduced attitude stabilization, IFAC Proceedings Volumes, 28 (1995), 495-501.  doi: 10.1016/S1474-6670(17)46878-9.  Google Scholar

[5]

J. Casey, Parallel transport of a vector on a surface, Exploring Curvature, (1996), 250–263. Google Scholar

[6]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins' problem for surfaces, Proceedings of the IFAC System, Structure and Control Conference, (2004), 563–565. Google Scholar

[7]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. I Nonnegative curvature, Journal of Geometric Analysis, 15 (2005), 565-587.  doi: 10.1007/BF02922245.  Google Scholar

[8]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. Ⅱ Negative curvature, SIAM Journal on Control and Optimization, 45 (2006), 457-482.  doi: 10.1137/040619739.  Google Scholar

[9]

R. Dandoloff, Berry's phase and Fermi-Walker parallel transport, Physics Letters A, 139 (1989), 19-20.  doi: 10.1016/0375-9601(89)90599-9.  Google Scholar

[10]

S. Eftekhar AzamS. Mariani and N. K. A. Attari, Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters, Nonlinear Dynamics, 89 (2017), 1489-1511.   Google Scholar

[11]

S. Fiori, On vector averaging over the unit hyphersphere, Digital Signal Processing, 19 (2009), 715-725.   Google Scholar

[12]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Fundamentals, Journal of Systems Science and Complexity, 29 (2016), 22-40.  doi: 10.1007/s11424-015-4063-7.  Google Scholar

[13]

S. Fiori, Non-delayed synchronization of non-autonomous dynamical systems on Riemannian manifolds and its applications, Nonlinear Dynamics, 94 (2018), 3077-3100.  doi: 10.1007/s11071-018-4546-x.  Google Scholar

[14]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation, Communications in Nonlinear Science and Numerical Simulation, 47 (2017), 207-222.  doi: 10.1016/j.cnsns.2016.11.025.  Google Scholar

[15]

R. FuentesG. Hicks and J. Osborne, The spring paradigm in tracking control of simple mechanical systems, Automatica, 47 (2011), 993-1000.  doi: 10.1016/j.automatica.2011.01.046.  Google Scholar

[16]

F. A. GoodarziD. Lee and T. Lee, Geometric control of a quadrotor UAV transporting a payload connected via flexible cable, International Journal of Control, Automation, and Systems, 13 (2015), 1486-1498.  doi: 10.1007/s12555-014-0304-0.  Google Scholar

[17]

M.-D. Hua, T. Hamel, R. Mahony and J. Trumpf, Gradient-like observer design on the special Euclidean group SE(3) with system outputs on the real projective space, Proceedings of the 54th IEEE Conference on Decision and Control, (2015), 2139–2145. doi: 10.1109/CDC.2015.7402523.  Google Scholar

[18]

M. KabiriH. Atrianfar and M. B. Menhaj, Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances, Nonlinear Dynamics, 90 (2017), 1695-1706.  doi: 10.1007/s11071-017-3759-8.  Google Scholar

[19]

L. M. LopesS. Fernandes and C. Grácio, Complete synchronization and delayed synchronization in couplings, Nonlinear Dynamics, 79 (2015), 1615-1624.  doi: 10.1007/s11071-014-1764-8.  Google Scholar

[20]

L. LüC. LiS. LiuZ. WangJ. Tian and J. Gu, The signal synchronization transmission among uncertain discrete networks with different nodes, Nonlinear Dynamics, 81 (2015), 801-809.   Google Scholar

[21]

C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman, 1973.  Google Scholar

[22]

A. MortadaP. Kokkonen and Y. Chitour, Rolling manifolds of different dimensions, Acta Applicandae Mathematicae, 139 (2015), 105-131.  doi: 10.1007/s10440-014-9972-2.  Google Scholar

[23]

K. OjoS. Ogunjo and A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, International Journal of Nonlinear Science, 24 (2017), 76-83.   Google Scholar

[24]

J. M. Osborne and G. P. Hicks, The geodesic spring on the Euclidean sphere with parallel-transport-based damping, Notices of the AMS, 60 (2013), 544-556.  doi: 10.1090/noti997.  Google Scholar

[25]

P. PirasL. TeresiL. TraversettiV. VaranoS. GabrieleT. KotsakisP. RaiaP. E. Puddu and M. Scalici, The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns, Evolution & Development, 18 (2016), 182-200.  doi: 10.1111/ede.12186.  Google Scholar

[26] W. H. PressS. A. TeukolskyW.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third edition. Cambridge University Press, Cambridge, 2007.   Google Scholar
[27]

H. Reckziegel and E. Wilhelmus, How the curvature generates the holonomy of a connection in an arbitrary fibre bundle, Results in Mathematics, 49 (2006), 339-359.  doi: 10.1007/s00025-006-0228-y.  Google Scholar

[28]

T. SoyfıdanH. Parlatici and M. A. Güngör, On the quaternionic curve according to parallel transport frame, TWMS Journal of Pure and Applied Mathematics, 4 (2013), 194-203.   Google Scholar

[29]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Wilmington, Del., 1979.  Google Scholar

[30]

Z. G. Ying and W. Q. Zhu, Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter, Nonlinear Dynamics, 90 (2017), 105-114.  doi: 10.1007/s11071-017-3650-7.  Google Scholar

[31]

W. Yu and Z. Pan, Dynamical equations of multibody systems on Lie groups, Advances in Mechanical Engineering, 7 (2015), 1-9.  doi: 10.1177/1687814015575959.  Google Scholar

[32]

Z. Zhang, Z. Ling and A. Sarlette, Modified integral control globally counters symmetry-breaking biases, Symmetry, 11 (2019), 639. doi: 10.3390/sym11050639.  Google Scholar

[33]

Y. Zou, Adaptive trajectory tracking control approach for a model-scaled helicopter, Nonlinear Dynamics, 83 (2016), 2171-2181.  doi: 10.1007/s11071-015-2473-7.  Google Scholar

show all references

References:
[1]

W. Ambrose and I. M. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443.  doi: 10.1090/S0002-9947-1953-0063739-1.  Google Scholar

[2]

R. Anirudh, V. Venkataraman and P. Turaga, A generalized Lyapunov feature for dynamical systems on Riemannian manifolds,, Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories, (2015), 4.1–4.10. doi: 10.5244/C.29.DIFFCV.4.  Google Scholar

[3]

A. Bejenaru and C. Udrişte, Multivariate optimal control with payoffs defined by submanifold integrals, Symmetry, 11 (2019), 893. doi: 10.3390/sym11070893.  Google Scholar

[4]

F. BulloR. M. Murray and A. Sarti, Control on the sphere and reduced attitude stabilization, IFAC Proceedings Volumes, 28 (1995), 495-501.  doi: 10.1016/S1474-6670(17)46878-9.  Google Scholar

[5]

J. Casey, Parallel transport of a vector on a surface, Exploring Curvature, (1996), 250–263. Google Scholar

[6]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins' problem for surfaces, Proceedings of the IFAC System, Structure and Control Conference, (2004), 563–565. Google Scholar

[7]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. I Nonnegative curvature, Journal of Geometric Analysis, 15 (2005), 565-587.  doi: 10.1007/BF02922245.  Google Scholar

[8]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. Ⅱ Negative curvature, SIAM Journal on Control and Optimization, 45 (2006), 457-482.  doi: 10.1137/040619739.  Google Scholar

[9]

R. Dandoloff, Berry's phase and Fermi-Walker parallel transport, Physics Letters A, 139 (1989), 19-20.  doi: 10.1016/0375-9601(89)90599-9.  Google Scholar

[10]

S. Eftekhar AzamS. Mariani and N. K. A. Attari, Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters, Nonlinear Dynamics, 89 (2017), 1489-1511.   Google Scholar

[11]

S. Fiori, On vector averaging over the unit hyphersphere, Digital Signal Processing, 19 (2009), 715-725.   Google Scholar

[12]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Fundamentals, Journal of Systems Science and Complexity, 29 (2016), 22-40.  doi: 10.1007/s11424-015-4063-7.  Google Scholar

[13]

S. Fiori, Non-delayed synchronization of non-autonomous dynamical systems on Riemannian manifolds and its applications, Nonlinear Dynamics, 94 (2018), 3077-3100.  doi: 10.1007/s11071-018-4546-x.  Google Scholar

[14]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation, Communications in Nonlinear Science and Numerical Simulation, 47 (2017), 207-222.  doi: 10.1016/j.cnsns.2016.11.025.  Google Scholar

[15]

R. FuentesG. Hicks and J. Osborne, The spring paradigm in tracking control of simple mechanical systems, Automatica, 47 (2011), 993-1000.  doi: 10.1016/j.automatica.2011.01.046.  Google Scholar

[16]

F. A. GoodarziD. Lee and T. Lee, Geometric control of a quadrotor UAV transporting a payload connected via flexible cable, International Journal of Control, Automation, and Systems, 13 (2015), 1486-1498.  doi: 10.1007/s12555-014-0304-0.  Google Scholar

[17]

M.-D. Hua, T. Hamel, R. Mahony and J. Trumpf, Gradient-like observer design on the special Euclidean group SE(3) with system outputs on the real projective space, Proceedings of the 54th IEEE Conference on Decision and Control, (2015), 2139–2145. doi: 10.1109/CDC.2015.7402523.  Google Scholar

[18]

M. KabiriH. Atrianfar and M. B. Menhaj, Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances, Nonlinear Dynamics, 90 (2017), 1695-1706.  doi: 10.1007/s11071-017-3759-8.  Google Scholar

[19]

L. M. LopesS. Fernandes and C. Grácio, Complete synchronization and delayed synchronization in couplings, Nonlinear Dynamics, 79 (2015), 1615-1624.  doi: 10.1007/s11071-014-1764-8.  Google Scholar

[20]

L. LüC. LiS. LiuZ. WangJ. Tian and J. Gu, The signal synchronization transmission among uncertain discrete networks with different nodes, Nonlinear Dynamics, 81 (2015), 801-809.   Google Scholar

[21]

C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman, 1973.  Google Scholar

[22]

A. MortadaP. Kokkonen and Y. Chitour, Rolling manifolds of different dimensions, Acta Applicandae Mathematicae, 139 (2015), 105-131.  doi: 10.1007/s10440-014-9972-2.  Google Scholar

[23]

K. OjoS. Ogunjo and A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, International Journal of Nonlinear Science, 24 (2017), 76-83.   Google Scholar

[24]

J. M. Osborne and G. P. Hicks, The geodesic spring on the Euclidean sphere with parallel-transport-based damping, Notices of the AMS, 60 (2013), 544-556.  doi: 10.1090/noti997.  Google Scholar

[25]

P. PirasL. TeresiL. TraversettiV. VaranoS. GabrieleT. KotsakisP. RaiaP. E. Puddu and M. Scalici, The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns, Evolution & Development, 18 (2016), 182-200.  doi: 10.1111/ede.12186.  Google Scholar

[26] W. H. PressS. A. TeukolskyW.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third edition. Cambridge University Press, Cambridge, 2007.   Google Scholar
[27]

H. Reckziegel and E. Wilhelmus, How the curvature generates the holonomy of a connection in an arbitrary fibre bundle, Results in Mathematics, 49 (2006), 339-359.  doi: 10.1007/s00025-006-0228-y.  Google Scholar

[28]

T. SoyfıdanH. Parlatici and M. A. Güngör, On the quaternionic curve according to parallel transport frame, TWMS Journal of Pure and Applied Mathematics, 4 (2013), 194-203.   Google Scholar

[29]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Wilmington, Del., 1979.  Google Scholar

[30]

Z. G. Ying and W. Q. Zhu, Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter, Nonlinear Dynamics, 90 (2017), 105-114.  doi: 10.1007/s11071-017-3650-7.  Google Scholar

[31]

W. Yu and Z. Pan, Dynamical equations of multibody systems on Lie groups, Advances in Mechanical Engineering, 7 (2015), 1-9.  doi: 10.1177/1687814015575959.  Google Scholar

[32]

Z. Zhang, Z. Ling and A. Sarlette, Modified integral control globally counters symmetry-breaking biases, Symmetry, 11 (2019), 639. doi: 10.3390/sym11050639.  Google Scholar

[33]

Y. Zou, Adaptive trajectory tracking control approach for a model-scaled helicopter, Nonlinear Dynamics, 83 (2016), 2171-2181.  doi: 10.1007/s11071-015-2473-7.  Google Scholar

Figure 1.  A mass-spring-damper system
Figure 2.  Depiction of the parallel transport of a tangent vector field from a smooth curve to another
Figure 3.  Exemplification of two curves on a curved manifold $ {{{\mathbb{M}}}} $ that meet at a point $ p $
Figure 4.  Depiction of the homotopic net used in the proof of the Lemma 5.1.
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[6]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[14]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[15]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[18]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[19]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[20]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]