• Previous Article
    Optimal control problems governed by 1-D Kobayashi–Warren–Carter type systems
  • MCRF Home
  • This Issue
  • Next Article
    Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport
doi: 10.3934/mcrf.2020032

On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems

1. 

Mathematical Institute, University of Bayreuth, Germany

2. 

Institute of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro, Brasil

* Corresponding author: Roberto Guglielmi

Received  November 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author acknowledges support from the Deutsche Forschungsgemeinschaft via Grant GR 1569/16-1. The second author was partially supported by the project INdAM-GNAMPA 2019 on "Controllabilità di PDE in modelli fisici e in scienze della vita", and he wish to thanks also the Mathematical Institute of the University of Bayreuth for supporting his visit to the department

The paper is devoted to analyze the connection between turnpike phenomena and strict dissipativity properties for continuous-time finite dimensional linear quadratic optimal control problems. We characterize strict dissipativity properties of the dynamics in terms of the system matrices related to the linear quadratic problem. These characterizations then lead to new necessary conditions for the turnpike properties under consideration, and thus eventually to necessary and sufficient conditions in terms of spectral criteria and matrix inequalities. One of the key novelty of these results is the possibility to encompass the presence of state and input constraints.

Citation: Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020032
References:
[1]

B. D. O. Anderson and P. V. Kokotović, Optimal control problems over large time intervals, Automatica, 23 (1987), 355–363. doi: 10.1016/0005-1098(87)90008-2.  Google Scholar

[2]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

D.A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control - Deterministic and Stochastic Systems, 2$^nd$ edition, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76755-5.  Google Scholar

[4]

T. Damm, Rational Matrix Equations in Stochastic Control, Lecture Notes in Control and Information Sciences, 297, Springer-Verlag, Berlin, 2004.  Google Scholar

[5]

T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52 (2014), 1935–1957. doi: 10.1137/120888934.  Google Scholar

[6]

R. Dorfman, P. A. Samuelson and R. M. Solow, Linear Programming and Economic Analysis, Reprint of the 1958 original, Dover Publications, New York, 1987.  Google Scholar

[7]

T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica, 81 (2017), 297–304. doi: 10.1016/j.automatica.2017.03.012.  Google Scholar

[8]

L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725–734. doi: 10.1016/j.automatica.2012.12.003.  Google Scholar

[9]

L. Grüne, Approximation properties of receding horizon optimal control, Jahresber. DMV, 118 (2016), 3–37. doi: 10.1365/s13291-016-0134-5.  Google Scholar

[10]

L. Grüne and R. Guglielmi, Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Control and Optim., 56 (2018), 1282–1302. doi: 10.1137/17M112350X.  Google Scholar

[11]

L. Grüne and M. A. Müller, On the relation between strict dissipativity and the turnpike property, Syst. Contr. Lett., 90, (2016), 45–53. doi: 10.1016/j.sysconle.2016.01.003.  Google Scholar

[12]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2nd edition, Springer-Verlag, London, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[13]

M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property, Syst. Control Lett., 90 (2016), 61–70. doi: 10.1016/j.sysconle.2016.02.001.  Google Scholar

[14]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Texts in Applied Mathematics, 48, Springer, Heidelberg, 2010.  Google Scholar

[15]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.  Google Scholar

[16]

A. Ibañez, Optimal control of the Lotka-Volterra system: turnpike property and numerical simulations, J. Biol. Dyn., 11 (2017), 25–41. doi: 10.1080/17513758.2016.1226435.  Google Scholar

[17]

L. W. McKenzie, Optimal economic growth, turnpike theorems and comparative dynamics, in Handbook of Mathematical Economics, Vol. Ⅲ, Amsterdam, North-Holland, 1 (1986), 1281–1355.  Google Scholar

[18]

P. Moylan, Dissipative Systems and Stability, 2014. Google Scholar

[19]

A. Porretta and E. Zuazua, Long time versus steady state optimal control, SIAM J. Control Optim., 51 (2013), 4242–4273. doi: 10.1137/130907239.  Google Scholar

[20]

J. B. Rawlings and R. Amrit, Optimizing process economic performance using model predictive control, in Nonlinear Model Predictive Control, (eds L. Magni and D. M. Raimondo and F. Allgöwer), Lecture Notes in Control and Information Science, 384, Springer-Verlag, (2009), 119–138. doi: 10.1007/978-3-642-01094-1_10.  Google Scholar

[21]

N. Sakamoto, D. Pighin and E. Zuazua, The turnpike property in nonlinear optimal control - A geometric approach, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, (2019), 2422–2427. doi: 10.1109/CDC40024.2019.9028863.  Google Scholar

[22]

E. D. Sontag, Mathematical Control Theory, 2nd edition, Springer Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[23]

E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control, J. Differ. Equ., 258 (2015), 81–114. doi: 10.1016/j.jde.2014.09.005.  Google Scholar

[24]

E. Trélat and C. Zhang, Integral and measure-turnpike property for infinite dimensional optimal control problems, Math. Control Signals Systems, 30 (2018), Art. 3, 34 pp. doi: 10.1007/s00498-018-0209-1.  Google Scholar

[25]

J. von Neumann, A model of general economic equilibrium, The Review of Economic Studies, 13 (1945), 1–9. doi: 10.2307/2296111.  Google Scholar

[26]

J. C. Willems, Dissipative dynamical systems. Ⅰ. General theory, Arch. Rational Mech. Anal., 45 (1972), 321–351. doi: 10.1007/BF00276493.  Google Scholar

[27]

J. C. Willems, Dissipative dynamical systems. Ⅱ. Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 352–393. doi: 10.1007/BF00276494.  Google Scholar

[28]

J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Autom. Control, 16 (1971), 621–634. doi: 10.1109/tac.1971.1099831.  Google Scholar

[29]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006.  Google Scholar

[30]

A. J. Zaslavski, Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer International, 2014. doi: 10.1007/978-3-319-08828-0.  Google Scholar

show all references

References:
[1]

B. D. O. Anderson and P. V. Kokotović, Optimal control problems over large time intervals, Automatica, 23 (1987), 355–363. doi: 10.1016/0005-1098(87)90008-2.  Google Scholar

[2]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

D.A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control - Deterministic and Stochastic Systems, 2$^nd$ edition, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76755-5.  Google Scholar

[4]

T. Damm, Rational Matrix Equations in Stochastic Control, Lecture Notes in Control and Information Sciences, 297, Springer-Verlag, Berlin, 2004.  Google Scholar

[5]

T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52 (2014), 1935–1957. doi: 10.1137/120888934.  Google Scholar

[6]

R. Dorfman, P. A. Samuelson and R. M. Solow, Linear Programming and Economic Analysis, Reprint of the 1958 original, Dover Publications, New York, 1987.  Google Scholar

[7]

T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica, 81 (2017), 297–304. doi: 10.1016/j.automatica.2017.03.012.  Google Scholar

[8]

L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725–734. doi: 10.1016/j.automatica.2012.12.003.  Google Scholar

[9]

L. Grüne, Approximation properties of receding horizon optimal control, Jahresber. DMV, 118 (2016), 3–37. doi: 10.1365/s13291-016-0134-5.  Google Scholar

[10]

L. Grüne and R. Guglielmi, Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Control and Optim., 56 (2018), 1282–1302. doi: 10.1137/17M112350X.  Google Scholar

[11]

L. Grüne and M. A. Müller, On the relation between strict dissipativity and the turnpike property, Syst. Contr. Lett., 90, (2016), 45–53. doi: 10.1016/j.sysconle.2016.01.003.  Google Scholar

[12]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2nd edition, Springer-Verlag, London, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[13]

M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property, Syst. Control Lett., 90 (2016), 61–70. doi: 10.1016/j.sysconle.2016.02.001.  Google Scholar

[14]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Texts in Applied Mathematics, 48, Springer, Heidelberg, 2010.  Google Scholar

[15]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.  Google Scholar

[16]

A. Ibañez, Optimal control of the Lotka-Volterra system: turnpike property and numerical simulations, J. Biol. Dyn., 11 (2017), 25–41. doi: 10.1080/17513758.2016.1226435.  Google Scholar

[17]

L. W. McKenzie, Optimal economic growth, turnpike theorems and comparative dynamics, in Handbook of Mathematical Economics, Vol. Ⅲ, Amsterdam, North-Holland, 1 (1986), 1281–1355.  Google Scholar

[18]

P. Moylan, Dissipative Systems and Stability, 2014. Google Scholar

[19]

A. Porretta and E. Zuazua, Long time versus steady state optimal control, SIAM J. Control Optim., 51 (2013), 4242–4273. doi: 10.1137/130907239.  Google Scholar

[20]

J. B. Rawlings and R. Amrit, Optimizing process economic performance using model predictive control, in Nonlinear Model Predictive Control, (eds L. Magni and D. M. Raimondo and F. Allgöwer), Lecture Notes in Control and Information Science, 384, Springer-Verlag, (2009), 119–138. doi: 10.1007/978-3-642-01094-1_10.  Google Scholar

[21]

N. Sakamoto, D. Pighin and E. Zuazua, The turnpike property in nonlinear optimal control - A geometric approach, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, (2019), 2422–2427. doi: 10.1109/CDC40024.2019.9028863.  Google Scholar

[22]

E. D. Sontag, Mathematical Control Theory, 2nd edition, Springer Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[23]

E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control, J. Differ. Equ., 258 (2015), 81–114. doi: 10.1016/j.jde.2014.09.005.  Google Scholar

[24]

E. Trélat and C. Zhang, Integral and measure-turnpike property for infinite dimensional optimal control problems, Math. Control Signals Systems, 30 (2018), Art. 3, 34 pp. doi: 10.1007/s00498-018-0209-1.  Google Scholar

[25]

J. von Neumann, A model of general economic equilibrium, The Review of Economic Studies, 13 (1945), 1–9. doi: 10.2307/2296111.  Google Scholar

[26]

J. C. Willems, Dissipative dynamical systems. Ⅰ. General theory, Arch. Rational Mech. Anal., 45 (1972), 321–351. doi: 10.1007/BF00276493.  Google Scholar

[27]

J. C. Willems, Dissipative dynamical systems. Ⅱ. Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 352–393. doi: 10.1007/BF00276494.  Google Scholar

[28]

J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Autom. Control, 16 (1971), 621–634. doi: 10.1109/tac.1971.1099831.  Google Scholar

[29]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006.  Google Scholar

[30]

A. J. Zaslavski, Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer International, 2014. doi: 10.1007/978-3-319-08828-0.  Google Scholar

Figure 1.  Schematic sketch of Theorem 8.1
Figure 2.  Schematic sketch of Theorem 8.4
[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[5]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[6]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[10]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[11]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[12]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[13]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[14]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. Aims: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[15]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[16]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[20]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (64)
  • HTML views (173)
  • Cited by (0)

Other articles
by authors

[Back to Top]