• Previous Article
    Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component
  • MCRF Home
  • This Issue
  • Next Article
    Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport
doi: 10.3934/mcrf.2020032

On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems

1. 

Mathematical Institute, University of Bayreuth, Germany

2. 

Institute of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro, Brasil

* Corresponding author: Roberto Guglielmi

Received  November 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author acknowledges support from the Deutsche Forschungsgemeinschaft via Grant GR 1569/16-1. The second author was partially supported by the project INdAM-GNAMPA 2019 on "Controllabilità di PDE in modelli fisici e in scienze della vita", and he wish to thanks also the Mathematical Institute of the University of Bayreuth for supporting his visit to the department

The paper is devoted to analyze the connection between turnpike phenomena and strict dissipativity properties for continuous-time finite dimensional linear quadratic optimal control problems. We characterize strict dissipativity properties of the dynamics in terms of the system matrices related to the linear quadratic problem. These characterizations then lead to new necessary conditions for the turnpike properties under consideration, and thus eventually to necessary and sufficient conditions in terms of spectral criteria and matrix inequalities. One of the key novelty of these results is the possibility to encompass the presence of state and input constraints.

Citation: Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020032
References:
[1]

B. D. O. Anderson and P. V. Kokotović, Optimal control problems over large time intervals, Automatica, 23 (1987), 355–363. doi: 10.1016/0005-1098(87)90008-2.  Google Scholar

[2]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

D.A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control - Deterministic and Stochastic Systems, 2$^nd$ edition, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76755-5.  Google Scholar

[4]

T. Damm, Rational Matrix Equations in Stochastic Control, Lecture Notes in Control and Information Sciences, 297, Springer-Verlag, Berlin, 2004.  Google Scholar

[5]

T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52 (2014), 1935–1957. doi: 10.1137/120888934.  Google Scholar

[6]

R. Dorfman, P. A. Samuelson and R. M. Solow, Linear Programming and Economic Analysis, Reprint of the 1958 original, Dover Publications, New York, 1987.  Google Scholar

[7]

T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica, 81 (2017), 297–304. doi: 10.1016/j.automatica.2017.03.012.  Google Scholar

[8]

L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725–734. doi: 10.1016/j.automatica.2012.12.003.  Google Scholar

[9]

L. Grüne, Approximation properties of receding horizon optimal control, Jahresber. DMV, 118 (2016), 3–37. doi: 10.1365/s13291-016-0134-5.  Google Scholar

[10]

L. Grüne and R. Guglielmi, Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Control and Optim., 56 (2018), 1282–1302. doi: 10.1137/17M112350X.  Google Scholar

[11]

L. Grüne and M. A. Müller, On the relation between strict dissipativity and the turnpike property, Syst. Contr. Lett., 90, (2016), 45–53. doi: 10.1016/j.sysconle.2016.01.003.  Google Scholar

[12]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2nd edition, Springer-Verlag, London, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[13]

M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property, Syst. Control Lett., 90 (2016), 61–70. doi: 10.1016/j.sysconle.2016.02.001.  Google Scholar

[14]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Texts in Applied Mathematics, 48, Springer, Heidelberg, 2010.  Google Scholar

[15]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.  Google Scholar

[16]

A. Ibañez, Optimal control of the Lotka-Volterra system: turnpike property and numerical simulations, J. Biol. Dyn., 11 (2017), 25–41. doi: 10.1080/17513758.2016.1226435.  Google Scholar

[17]

L. W. McKenzie, Optimal economic growth, turnpike theorems and comparative dynamics, in Handbook of Mathematical Economics, Vol. Ⅲ, Amsterdam, North-Holland, 1 (1986), 1281–1355.  Google Scholar

[18]

P. Moylan, Dissipative Systems and Stability, 2014. Google Scholar

[19]

A. Porretta and E. Zuazua, Long time versus steady state optimal control, SIAM J. Control Optim., 51 (2013), 4242–4273. doi: 10.1137/130907239.  Google Scholar

[20]

J. B. Rawlings and R. Amrit, Optimizing process economic performance using model predictive control, in Nonlinear Model Predictive Control, (eds L. Magni and D. M. Raimondo and F. Allgöwer), Lecture Notes in Control and Information Science, 384, Springer-Verlag, (2009), 119–138. doi: 10.1007/978-3-642-01094-1_10.  Google Scholar

[21]

N. Sakamoto, D. Pighin and E. Zuazua, The turnpike property in nonlinear optimal control - A geometric approach, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, (2019), 2422–2427. doi: 10.1109/CDC40024.2019.9028863.  Google Scholar

[22]

E. D. Sontag, Mathematical Control Theory, 2nd edition, Springer Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[23]

E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control, J. Differ. Equ., 258 (2015), 81–114. doi: 10.1016/j.jde.2014.09.005.  Google Scholar

[24]

E. Trélat and C. Zhang, Integral and measure-turnpike property for infinite dimensional optimal control problems, Math. Control Signals Systems, 30 (2018), Art. 3, 34 pp. doi: 10.1007/s00498-018-0209-1.  Google Scholar

[25]

J. von Neumann, A model of general economic equilibrium, The Review of Economic Studies, 13 (1945), 1–9. doi: 10.2307/2296111.  Google Scholar

[26]

J. C. Willems, Dissipative dynamical systems. Ⅰ. General theory, Arch. Rational Mech. Anal., 45 (1972), 321–351. doi: 10.1007/BF00276493.  Google Scholar

[27]

J. C. Willems, Dissipative dynamical systems. Ⅱ. Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 352–393. doi: 10.1007/BF00276494.  Google Scholar

[28]

J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Autom. Control, 16 (1971), 621–634. doi: 10.1109/tac.1971.1099831.  Google Scholar

[29]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006.  Google Scholar

[30]

A. J. Zaslavski, Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer International, 2014. doi: 10.1007/978-3-319-08828-0.  Google Scholar

show all references

References:
[1]

B. D. O. Anderson and P. V. Kokotović, Optimal control problems over large time intervals, Automatica, 23 (1987), 355–363. doi: 10.1016/0005-1098(87)90008-2.  Google Scholar

[2]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

D.A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control - Deterministic and Stochastic Systems, 2$^nd$ edition, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76755-5.  Google Scholar

[4]

T. Damm, Rational Matrix Equations in Stochastic Control, Lecture Notes in Control and Information Sciences, 297, Springer-Verlag, Berlin, 2004.  Google Scholar

[5]

T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52 (2014), 1935–1957. doi: 10.1137/120888934.  Google Scholar

[6]

R. Dorfman, P. A. Samuelson and R. M. Solow, Linear Programming and Economic Analysis, Reprint of the 1958 original, Dover Publications, New York, 1987.  Google Scholar

[7]

T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica, 81 (2017), 297–304. doi: 10.1016/j.automatica.2017.03.012.  Google Scholar

[8]

L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725–734. doi: 10.1016/j.automatica.2012.12.003.  Google Scholar

[9]

L. Grüne, Approximation properties of receding horizon optimal control, Jahresber. DMV, 118 (2016), 3–37. doi: 10.1365/s13291-016-0134-5.  Google Scholar

[10]

L. Grüne and R. Guglielmi, Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Control and Optim., 56 (2018), 1282–1302. doi: 10.1137/17M112350X.  Google Scholar

[11]

L. Grüne and M. A. Müller, On the relation between strict dissipativity and the turnpike property, Syst. Contr. Lett., 90, (2016), 45–53. doi: 10.1016/j.sysconle.2016.01.003.  Google Scholar

[12]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2nd edition, Springer-Verlag, London, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[13]

M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property, Syst. Control Lett., 90 (2016), 61–70. doi: 10.1016/j.sysconle.2016.02.001.  Google Scholar

[14]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Texts in Applied Mathematics, 48, Springer, Heidelberg, 2010.  Google Scholar

[15]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.  Google Scholar

[16]

A. Ibañez, Optimal control of the Lotka-Volterra system: turnpike property and numerical simulations, J. Biol. Dyn., 11 (2017), 25–41. doi: 10.1080/17513758.2016.1226435.  Google Scholar

[17]

L. W. McKenzie, Optimal economic growth, turnpike theorems and comparative dynamics, in Handbook of Mathematical Economics, Vol. Ⅲ, Amsterdam, North-Holland, 1 (1986), 1281–1355.  Google Scholar

[18]

P. Moylan, Dissipative Systems and Stability, 2014. Google Scholar

[19]

A. Porretta and E. Zuazua, Long time versus steady state optimal control, SIAM J. Control Optim., 51 (2013), 4242–4273. doi: 10.1137/130907239.  Google Scholar

[20]

J. B. Rawlings and R. Amrit, Optimizing process economic performance using model predictive control, in Nonlinear Model Predictive Control, (eds L. Magni and D. M. Raimondo and F. Allgöwer), Lecture Notes in Control and Information Science, 384, Springer-Verlag, (2009), 119–138. doi: 10.1007/978-3-642-01094-1_10.  Google Scholar

[21]

N. Sakamoto, D. Pighin and E. Zuazua, The turnpike property in nonlinear optimal control - A geometric approach, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, (2019), 2422–2427. doi: 10.1109/CDC40024.2019.9028863.  Google Scholar

[22]

E. D. Sontag, Mathematical Control Theory, 2nd edition, Springer Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[23]

E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control, J. Differ. Equ., 258 (2015), 81–114. doi: 10.1016/j.jde.2014.09.005.  Google Scholar

[24]

E. Trélat and C. Zhang, Integral and measure-turnpike property for infinite dimensional optimal control problems, Math. Control Signals Systems, 30 (2018), Art. 3, 34 pp. doi: 10.1007/s00498-018-0209-1.  Google Scholar

[25]

J. von Neumann, A model of general economic equilibrium, The Review of Economic Studies, 13 (1945), 1–9. doi: 10.2307/2296111.  Google Scholar

[26]

J. C. Willems, Dissipative dynamical systems. Ⅰ. General theory, Arch. Rational Mech. Anal., 45 (1972), 321–351. doi: 10.1007/BF00276493.  Google Scholar

[27]

J. C. Willems, Dissipative dynamical systems. Ⅱ. Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 352–393. doi: 10.1007/BF00276494.  Google Scholar

[28]

J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Autom. Control, 16 (1971), 621–634. doi: 10.1109/tac.1971.1099831.  Google Scholar

[29]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006.  Google Scholar

[30]

A. J. Zaslavski, Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer International, 2014. doi: 10.1007/978-3-319-08828-0.  Google Scholar

Figure 1.  Schematic sketch of Theorem 8.1
Figure 2.  Schematic sketch of Theorem 8.4
[1]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[2]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[3]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[4]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[5]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[8]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[9]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020026

[10]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[11]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[12]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[13]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[14]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[15]

Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245

[16]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[17]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[18]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[19]

Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 143-156. doi: 10.3934/naco.2019044

[20]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]