doi: 10.3934/mcrf.2020033

Fractional optimal control problems on a star graph: Optimality system and numerical solution

1. 

Department of Mathematics, Indian Institute of Technology Delhi, 110016, Delhi, India

2. 

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl Angewandte Mathematik Ⅱ, Cauerstr. 11, 91058 Erlangen, Germany

* Corresponding author: Mani Mehra

Received  December 2019 Revised  May 2020 Published  June 2020

In this paper, we study optimal control problems for nonlinear fractional order boundary value problems on a star graph, where the fractional derivative is described in the Caputo sense. The adjoint state and the optimality system are derived for fractional optimal control problem (FOCP) by using the Lagrange multiplier method. Then, the existence and uniqueness of solution of the adjoint equation is proved by means of the Banach contraction principle. We also present a numerical method to find the approximate solution of the resulting optimality system. In the proposed method, the $ L2 $ scheme and the Grünwald-Letnikov formula is used for the approximation of the Caputo fractional derivative and the right Riemann-Liouville fractional derivative, respectively, which converts the optimality system into a system of linear algebraic equations. Two examples are provided to demonstrate the feasibility of the numerical method.

Citation: Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020033
References:
[1]

O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.  doi: 10.1016/S0022-247X(02)00180-4.  Google Scholar

[2]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynamics, 38 (2004), 323-337.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[3]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 6287-6303.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[4]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems, Journal of Vibration and Control, 14 (2008), 1291-1299.  doi: 10.1177/1077546307087451.  Google Scholar

[5]

R. Almeida and D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with {C}aputo derivatives, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1490-1500.  doi: 10.1016/j.cnsns.2010.07.016.  Google Scholar

[6]

H. W. Berhe, S. Qureshi and A. A. Shaikh, Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis, Chaos, Solitons & Fractals, 131 (2020), 109536, 13 pp. doi: 10.1016/j.chaos.2019.109536.  Google Scholar

[7]

T. Blaszczyk and M. Ciesielski, Fractional oscillator equation–transformation into integral equation and numerical solution, Applied Mathematics and Computation, 257 (2015), 428-435.  doi: 10.1016/j.amc.2014.12.122.  Google Scholar

[8]

G. W. Bohannan, Analog fractional order controller in temperature and motor control applications, Journal of Vibration and Control, 14 (2008), 1487-1498.  doi: 10.1177/1077546307087435.  Google Scholar

[9]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[10]

A. DebboucheJ. J. Nieto and D. F. M. Torres, Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, Journal of Optimization Theory and Applications, 174 (2017), 7-31.  doi: 10.1007/s10957-015-0743-7.  Google Scholar

[11]

T. L. Guo, The necessary conditions of fractional optimal control in the sense of Caputo, Journal of Optimization Theory and Applications, 156 (2013), 115-126.  doi: 10.1007/s10957-012-0233-0.  Google Scholar

[12]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[13]

A. A. Kilbas and H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.  Google Scholar

[14]

D. E. Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004. Google Scholar

[15]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling and controllability of networks of thin beams, Lect. Notes Control Inf. Sci., 180 (1992), 467-480.  doi: 10.1007/BFb0113314.  Google Scholar

[16]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Control of planar networks of Timoshenko beams, SIAM J. Control Optim., 31 (1993), 780-811.  doi: 10.1137/0331035.  Google Scholar

[17]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.  Google Scholar

[18]

J. E. Lagnese and G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[19]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, On the analysis and control of hyperbolic systems associated with vibrating networks, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 77-104.  doi: 10.1017/S0308210500029206.  Google Scholar

[20]

G. Leugering, On the semi-discretization of optimal control problems for networks of elastic strings:global optimality systems and domain decomposition, J. Comput. Appl. Math., 120 (2000), 133-157.  doi: 10.1016/S0377-0427(00)00307-1.  Google Scholar

[21]

G. Leugering, Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks, Applied Mathematics, 8 (2017), 1074-1099.  doi: 10.4236/am.2017.88082.  Google Scholar

[22]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Taylor and Francis group, 2015. doi: 10.1201/b18503.  Google Scholar

[23]

A. A. Lotfi and S. A. Yousefi, A numerical technique for solving a class of fractional variational problems, Journal of Computational and Applied Mathematics, 237 (2013), 633-643.  doi: 10.1016/j.cam.2012.08.005.  Google Scholar

[24]

G. Lumer, Connecting of local operators and evolution equtaions on a network, Lect. Notes Math., 787 (1980), 219-234.   Google Scholar

[25]

R. L. Magin and M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, Journal of Vibration and Control, 14 (2008), 1431-1442.   Google Scholar

[26]

F. Mainardi and P. Paradisi, Fractional diffusive waves, Journal of Computational Acoustics, 9 (2001), 1417-1436.  doi: 10.1142/S0218396X01000826.  Google Scholar

[27]

V. MehandirattaM. Mehra and G. Leugering, Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, Journal of Mathematical Analysis and Applications, 477 (2019), 1243-1264.  doi: 10.1016/j.jmaa.2019.05.011.  Google Scholar

[28]

G. Mophou, G. Leugering and P. S. Fotsing, Optimal control of a fractional Sturm-Liouville problem on a star graph, Optimization, (2020), 1–29. doi: 10.1080/02331934.2020.1730371.  Google Scholar

[29]

G. Mophou, Optimal control for fractional diffusion equations with incomplete data, Journal of Optimization Theory and Applications, 174 (2017), 176-196.  doi: 10.1007/s10957-015-0817-6.  Google Scholar

[30]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[31]

K. S. Patel and M. Mehra, Fourth order compact scheme for space fractional advection-diffusion reaction equations with variable coefficients, J. Comput. Appl. Math., 380 (2020), 112963. doi: 10.1016/j.cam.2020.112963.  Google Scholar

[32]

Y. V. Pokornyi and A. V. Borovskikh, Differential equations on networks (geometric graphs), Journal of Mathematical Sciences, 119 (2004), 691-718.  doi: 10.1023/B:JOTH.0000012752.77290.fa.  Google Scholar

[33]

S. Qureshi and A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A: Statistical Mechanics and its Applications, 526 (2019), 121127, 19 pp. doi: 10.1016/j.physa.2019.121127.  Google Scholar

[34]

S. Qureshi and P. Kumar, Using Shehu integral transform to solve fractional order Caputo type initial value problems, Journal of Applied Mathematics and Computational Mechanics, 18 (2019), 75-83.  doi: 10.17512/jamcm.2019.2.07.  Google Scholar

[35]

S. Qureshi and A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons & Fractals, 126 (2019), 32-40.  doi: 10.1016/j.chaos.2019.05.037.  Google Scholar

[36]

S. Qureshi, A. Yusuf, A. A. Shaikh and M. Inc, Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A: Statistical Mechanics and its Applications, 534 (2019), 122149, 22 pp. doi: 10.1016/j.physa.2019.122149.  Google Scholar

[37]

K. Sayevand and M. Rostami, Fractional optimal control problems: Optimality conditions and numerical solution, IMA Journal of Mathematical Control and Information, 35 (2016), 123-148.  doi: 10.1093/imamci/dnw041.  Google Scholar

[38]

H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Physical Review B, 12 (1975), 2455. doi: 10.1103/PhysRevB.12.2455.  Google Scholar

[39]

A. Shukla, M. Mehra and G. Leugering, A fast adaptive spectral graph wavelet method for the viscous Burgers' equation on a star-shaped connected graph, Mathematical Methods in the Applied Sciences, (2019). doi: 10.1002/mma.5907.  Google Scholar

[40]

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd, 2014. doi: 10.1142/9069.  Google Scholar

show all references

References:
[1]

O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.  doi: 10.1016/S0022-247X(02)00180-4.  Google Scholar

[2]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynamics, 38 (2004), 323-337.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[3]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 6287-6303.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[4]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems, Journal of Vibration and Control, 14 (2008), 1291-1299.  doi: 10.1177/1077546307087451.  Google Scholar

[5]

R. Almeida and D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with {C}aputo derivatives, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1490-1500.  doi: 10.1016/j.cnsns.2010.07.016.  Google Scholar

[6]

H. W. Berhe, S. Qureshi and A. A. Shaikh, Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis, Chaos, Solitons & Fractals, 131 (2020), 109536, 13 pp. doi: 10.1016/j.chaos.2019.109536.  Google Scholar

[7]

T. Blaszczyk and M. Ciesielski, Fractional oscillator equation–transformation into integral equation and numerical solution, Applied Mathematics and Computation, 257 (2015), 428-435.  doi: 10.1016/j.amc.2014.12.122.  Google Scholar

[8]

G. W. Bohannan, Analog fractional order controller in temperature and motor control applications, Journal of Vibration and Control, 14 (2008), 1487-1498.  doi: 10.1177/1077546307087435.  Google Scholar

[9]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[10]

A. DebboucheJ. J. Nieto and D. F. M. Torres, Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, Journal of Optimization Theory and Applications, 174 (2017), 7-31.  doi: 10.1007/s10957-015-0743-7.  Google Scholar

[11]

T. L. Guo, The necessary conditions of fractional optimal control in the sense of Caputo, Journal of Optimization Theory and Applications, 156 (2013), 115-126.  doi: 10.1007/s10957-012-0233-0.  Google Scholar

[12]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[13]

A. A. Kilbas and H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.  Google Scholar

[14]

D. E. Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004. Google Scholar

[15]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling and controllability of networks of thin beams, Lect. Notes Control Inf. Sci., 180 (1992), 467-480.  doi: 10.1007/BFb0113314.  Google Scholar

[16]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Control of planar networks of Timoshenko beams, SIAM J. Control Optim., 31 (1993), 780-811.  doi: 10.1137/0331035.  Google Scholar

[17]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.  Google Scholar

[18]

J. E. Lagnese and G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[19]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, On the analysis and control of hyperbolic systems associated with vibrating networks, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 77-104.  doi: 10.1017/S0308210500029206.  Google Scholar

[20]

G. Leugering, On the semi-discretization of optimal control problems for networks of elastic strings:global optimality systems and domain decomposition, J. Comput. Appl. Math., 120 (2000), 133-157.  doi: 10.1016/S0377-0427(00)00307-1.  Google Scholar

[21]

G. Leugering, Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks, Applied Mathematics, 8 (2017), 1074-1099.  doi: 10.4236/am.2017.88082.  Google Scholar

[22]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Taylor and Francis group, 2015. doi: 10.1201/b18503.  Google Scholar

[23]

A. A. Lotfi and S. A. Yousefi, A numerical technique for solving a class of fractional variational problems, Journal of Computational and Applied Mathematics, 237 (2013), 633-643.  doi: 10.1016/j.cam.2012.08.005.  Google Scholar

[24]

G. Lumer, Connecting of local operators and evolution equtaions on a network, Lect. Notes Math., 787 (1980), 219-234.   Google Scholar

[25]

R. L. Magin and M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, Journal of Vibration and Control, 14 (2008), 1431-1442.   Google Scholar

[26]

F. Mainardi and P. Paradisi, Fractional diffusive waves, Journal of Computational Acoustics, 9 (2001), 1417-1436.  doi: 10.1142/S0218396X01000826.  Google Scholar

[27]

V. MehandirattaM. Mehra and G. Leugering, Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, Journal of Mathematical Analysis and Applications, 477 (2019), 1243-1264.  doi: 10.1016/j.jmaa.2019.05.011.  Google Scholar

[28]

G. Mophou, G. Leugering and P. S. Fotsing, Optimal control of a fractional Sturm-Liouville problem on a star graph, Optimization, (2020), 1–29. doi: 10.1080/02331934.2020.1730371.  Google Scholar

[29]

G. Mophou, Optimal control for fractional diffusion equations with incomplete data, Journal of Optimization Theory and Applications, 174 (2017), 176-196.  doi: 10.1007/s10957-015-0817-6.  Google Scholar

[30]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[31]

K. S. Patel and M. Mehra, Fourth order compact scheme for space fractional advection-diffusion reaction equations with variable coefficients, J. Comput. Appl. Math., 380 (2020), 112963. doi: 10.1016/j.cam.2020.112963.  Google Scholar

[32]

Y. V. Pokornyi and A. V. Borovskikh, Differential equations on networks (geometric graphs), Journal of Mathematical Sciences, 119 (2004), 691-718.  doi: 10.1023/B:JOTH.0000012752.77290.fa.  Google Scholar

[33]

S. Qureshi and A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A: Statistical Mechanics and its Applications, 526 (2019), 121127, 19 pp. doi: 10.1016/j.physa.2019.121127.  Google Scholar

[34]

S. Qureshi and P. Kumar, Using Shehu integral transform to solve fractional order Caputo type initial value problems, Journal of Applied Mathematics and Computational Mechanics, 18 (2019), 75-83.  doi: 10.17512/jamcm.2019.2.07.  Google Scholar

[35]

S. Qureshi and A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons & Fractals, 126 (2019), 32-40.  doi: 10.1016/j.chaos.2019.05.037.  Google Scholar

[36]

S. Qureshi, A. Yusuf, A. A. Shaikh and M. Inc, Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A: Statistical Mechanics and its Applications, 534 (2019), 122149, 22 pp. doi: 10.1016/j.physa.2019.122149.  Google Scholar

[37]

K. Sayevand and M. Rostami, Fractional optimal control problems: Optimality conditions and numerical solution, IMA Journal of Mathematical Control and Information, 35 (2016), 123-148.  doi: 10.1093/imamci/dnw041.  Google Scholar

[38]

H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Physical Review B, 12 (1975), 2455. doi: 10.1103/PhysRevB.12.2455.  Google Scholar

[39]

A. Shukla, M. Mehra and G. Leugering, A fast adaptive spectral graph wavelet method for the viscous Burgers' equation on a star-shaped connected graph, Mathematical Methods in the Applied Sciences, (2019). doi: 10.1002/mma.5907.  Google Scholar

[40]

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd, 2014. doi: 10.1142/9069.  Google Scholar

Figure 1.  A sketch of the star graph with $ k $ edges along with boundary control
Figure 2.  Convergence of $ y_i(x) $, $ i=1,2,3 $ for the optimality system $ (50) $ for $ \alpha=3/2 $
Figure 3.  State variables $ y_i(x) $, $ i=1,2,3 $, for different fractional order $ \alpha $ for the optimality system $ (50) $ with $ N=64 $
Figure 4.  Convergence of $ y_i(x) $, $ i=1,2,3 $ for the optimality system $ (54) $ for $ \alpha=3/2 $
Table 1.  Control variable $ u=(u_1,u_2,u_3) $ for different values of $ N $
$ N $ $ u_1 $ $ u_2 $ $ u_3 $
32 .1867 .1792 .1749
64 .1834 .1762 .1718
128 .1817 .1746 .1702
256 .1808 .1738 .1694
512 .1804 .1734 .1690
1024 .1802 .1732 .1688
$ N $ $ u_1 $ $ u_2 $ $ u_3 $
32 .1867 .1792 .1749
64 .1834 .1762 .1718
128 .1817 .1746 .1702
256 .1808 .1738 .1694
512 .1804 .1734 .1690
1024 .1802 .1732 .1688
Table 2.  Control variable $ u=(u_1,u_2,u_3) $ for different fractional order $ \alpha $ with $ N=64 $
$ \alpha $ $ u_1 $ $ u_2 $ $ u_3 $
1.2 .2017 .1959 .1910
1.4 .1894 .1824 .1778
1.6 .1775 .1703 .1662
1.8 .1666 .1598 .1563
2 .1572 .1511 .1482
$ \alpha $ $ u_1 $ $ u_2 $ $ u_3 $
1.2 .2017 .1959 .1910
1.4 .1894 .1824 .1778
1.6 .1775 .1703 .1662
1.8 .1666 .1598 .1563
2 .1572 .1511 .1482
[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[10]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[19]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[20]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (74)
  • HTML views (171)
  • Cited by (1)

[Back to Top]