doi: 10.3934/mcrf.2020034

Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition

1. 

B. Verkin Institute for Low Temperature Physics and Engineering, of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine

2. 

B. Verkin Institute for Low Temperature Physics and Engineering, of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

* Corresponding author: Larissa Fardigola

Received  September 2019 Revised  June 2020 Published  August 2020

In the paper, the problems of controllability and approximate controllability are studied for the control system $ w_t = w_{xx} $, $ w_x(0,\cdot) = u $, $ x>0 $, $ t\in(0,T) $, where $ u\in L^\infty(0,T) $ is a control. It is proved that each initial state of the system is approximately controllable to each target state in a given time $ T $. A necessary and sufficient condition for controllability in a given time $ T $ is obtained in terms of solvability of a Markov power moment problem. It is also shown that there is no initial state which is null-controllable in a given time $ T $. Orthogonal bases are constructed in $ H^1 $ and $ H_1 $. Using these bases, numerical solutions to the approximate controllability problem are obtained. The results are illustrated by examples.

Citation: Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020034
References:
[1]

V. R. CabanillasS. B. De Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl., 110 (2001), 245-264.  doi: 10.1023/A:1017515027783.  Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var., 10 (2004), 381-408.  doi: 10.1051/cocv:2004010.  Google Scholar

[3]

J. Darde and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692-1715.  doi: 10.1137/16M1093215.  Google Scholar

[4]

L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal., 37 (1999), 1059-1090.  doi: 10.1016/S0362-546X(98)00085-6.  Google Scholar

[5]

V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints, Comput. Optim. Appl., 50 (2011), 75-110.  doi: 10.1007/s10589-009-9310-1.  Google Scholar

[6]

L. V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Dr.Hab. Thesis, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 2016 (Ukrainian). Google Scholar

[7]

L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, Zh. Mat. Fiz. Anal. Geom., 15 (2019), 57-78.  doi: 10.15407/mag15.01.057.  Google Scholar

[8]

S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992.  Google Scholar

[9]

L. Gosse and O. Runberg, Resolution of the finite Markov moment problem, Comptes Rendus Mathematiques, 341 (2005), 775-789.  doi: 10.1016/j.crma.2005.10.009.  Google Scholar

[10]

U. W. Hochstrasser, Orthogonal palynomials, in Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), National Bureau of Standards, Applied Mathematics Series 55, Washington, DC, 1972, 771–802. Google Scholar

[11] T. H. KoornwinderR. WongR. Koekoek and R. F. Swarttouw, Orthogonal Polynomials, in NIST Handbook of Mathematical Functions, (eds. F.W.J. Olver, D.M. Lozier, F.F. Boisvert, and C.W. Clark) Cambridge University Press, 2010.   Google Scholar
[12]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.  Google Scholar

[13]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24.   Google Scholar

[14]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.  Google Scholar

[15]

A. Munch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.  doi: 10.1017/S0956792514000023.  Google Scholar

[16]

S. S. Sener and M. Subasi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), Article number: 166, Available from: https://doi.org/10.1186/s13661-015-0430-5. doi: 10.1186/s13661-015-0430-5.  Google Scholar

[17]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, Ⅳ (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1.  Google Scholar

[18]

E. Zuazua, Some problems and results on the controllability of partial differential equations, in Proceedings of the Second European Congress of Mathematics, Budapest, July 1996, Progress in Mathematics, 169, Birkhäuser Verlag, Basel, 276–311.  Google Scholar

show all references

References:
[1]

V. R. CabanillasS. B. De Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl., 110 (2001), 245-264.  doi: 10.1023/A:1017515027783.  Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var., 10 (2004), 381-408.  doi: 10.1051/cocv:2004010.  Google Scholar

[3]

J. Darde and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692-1715.  doi: 10.1137/16M1093215.  Google Scholar

[4]

L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal., 37 (1999), 1059-1090.  doi: 10.1016/S0362-546X(98)00085-6.  Google Scholar

[5]

V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints, Comput. Optim. Appl., 50 (2011), 75-110.  doi: 10.1007/s10589-009-9310-1.  Google Scholar

[6]

L. V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Dr.Hab. Thesis, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 2016 (Ukrainian). Google Scholar

[7]

L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, Zh. Mat. Fiz. Anal. Geom., 15 (2019), 57-78.  doi: 10.15407/mag15.01.057.  Google Scholar

[8]

S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992.  Google Scholar

[9]

L. Gosse and O. Runberg, Resolution of the finite Markov moment problem, Comptes Rendus Mathematiques, 341 (2005), 775-789.  doi: 10.1016/j.crma.2005.10.009.  Google Scholar

[10]

U. W. Hochstrasser, Orthogonal palynomials, in Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), National Bureau of Standards, Applied Mathematics Series 55, Washington, DC, 1972, 771–802. Google Scholar

[11] T. H. KoornwinderR. WongR. Koekoek and R. F. Swarttouw, Orthogonal Polynomials, in NIST Handbook of Mathematical Functions, (eds. F.W.J. Olver, D.M. Lozier, F.F. Boisvert, and C.W. Clark) Cambridge University Press, 2010.   Google Scholar
[12]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.  Google Scholar

[13]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24.   Google Scholar

[14]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.  Google Scholar

[15]

A. Munch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.  doi: 10.1017/S0956792514000023.  Google Scholar

[16]

S. S. Sener and M. Subasi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), Article number: 166, Available from: https://doi.org/10.1186/s13661-015-0430-5. doi: 10.1186/s13661-015-0430-5.  Google Scholar

[17]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, Ⅳ (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1.  Google Scholar

[18]

E. Zuazua, Some problems and results on the controllability of partial differential equations, in Proceedings of the Second European Congress of Mathematics, Budapest, July 1996, Progress in Mathematics, 169, Birkhäuser Verlag, Basel, 276–311.  Google Scholar

Figure 1.  The functions $ u_l^n $
Figure 2.  (A)–(D): The controls $ u_N $ defined by (70). (E), (F): The influence of these controls on the end state of the solution to (6), (7) with $ W^T(x) = \frac{1}{\sqrt\pi} \int_0^T e^{-\frac{x^2}{4\xi}}\frac{2\xi-1}{\sqrt\xi}d\xi $ and $ u = u_N $.
Figure 3.  (A)–(D): The controls $ u_N $ defined by (70). (E), (F): The influence of these controls on the end state of the solution to (6), (7) with $ W^T(x) = \frac{1}{\sqrt\pi} \int_0^T e^{-\frac{x^2}{4\xi}}\frac{2(\xi-1)^2-1}{\sqrt\xi}d\xi $ and $ u = u_N $.
Figure 4.  (A), (B): The controls $ u_{N,l} $ defined by (70). (C), (D): The influence of these controls on the end state $ W_N^l $ of the solution to (6), (7) with $ W^T(x) = \cosh xe^{-\frac{x^2}{2}-\frac{1}{4}} $ and $ u = u_{N,l} $.
Table 1.  The estimates for $ \left\| W^T-W_N^l\right\|^1 $
$ \varepsilon_N^1 $ $ \varepsilon_{N,l}^2 $ $ \varepsilon_N^1+\varepsilon_{N,l}^2 $
$ N=3 $, $ l=100 $ 0.18666 0.12756 0.31422
$ N=3 $, $ l=200 $ 0.18666 0.05927 0.24593
$ N=4 $, $ l=150 $ 0.01535 0.08648 0.10183
$ N=4 $, $ l=400 $ 0.01535 0.03038 0.04573
$ \varepsilon_N^1 $ $ \varepsilon_{N,l}^2 $ $ \varepsilon_N^1+\varepsilon_{N,l}^2 $
$ N=3 $, $ l=100 $ 0.18666 0.12756 0.31422
$ N=3 $, $ l=200 $ 0.18666 0.05927 0.24593
$ N=4 $, $ l=150 $ 0.01535 0.08648 0.10183
$ N=4 $, $ l=400 $ 0.01535 0.03038 0.04573
[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (24)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]