[1]
|
V. R. Cabanillas, S. B. De Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl., 110 (2001), 245-264.
doi: 10.1023/A:1017515027783.
|
[2]
|
P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var., 10 (2004), 381-408.
doi: 10.1051/cocv:2004010.
|
[3]
|
J. Darde and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692-1715.
doi: 10.1137/16M1093215.
|
[4]
|
L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal., 37 (1999), 1059-1090.
doi: 10.1016/S0362-546X(98)00085-6.
|
[5]
|
V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints, Comput. Optim. Appl., 50 (2011), 75-110.
doi: 10.1007/s10589-009-9310-1.
|
[6]
|
L. V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Dr.Hab. Thesis, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 2016 (Ukrainian).
|
[7]
|
L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, Zh. Mat. Fiz. Anal. Geom., 15 (2019), 57-78.
doi: 10.15407/mag15.01.057.
|
[8]
|
S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992.
|
[9]
|
L. Gosse and O. Runberg, Resolution of the finite Markov moment problem, Comptes Rendus Mathematiques, 341 (2005), 775-789.
doi: 10.1016/j.crma.2005.10.009.
|
[10]
|
U. W. Hochstrasser, Orthogonal palynomials, in Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), National Bureau of Standards, Applied Mathematics Series 55, Washington, DC, 1972, 771–802.
|
[11]
|
T. H. Koornwinder, R. Wong, R. Koekoek and R. F. Swarttouw, Orthogonal Polynomials, in NIST Handbook of Mathematical Functions, (eds. F.W.J. Olver, D.M. Lozier, F.F. Boisvert, and C.W. Clark) Cambridge University Press, 2010.
|
[12]
|
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.
|
[13]
|
S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24.
|
[14]
|
S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.
doi: 10.1090/S0002-9947-00-02665-9.
|
[15]
|
A. Munch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.
doi: 10.1017/S0956792514000023.
|
[16]
|
S. S. Sener and M. Subasi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), Article number: 166, Available from: https://doi.org/10.1186/s13661-015-0430-5.
doi: 10.1186/s13661-015-0430-5.
|
[17]
|
X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, Ⅳ (2010), 3008–3034.
doi: 10.1007/978-0-387-89488-1.
|
[18]
|
E. Zuazua, Some problems and results on the controllability of partial differential equations, in Proceedings of the Second European Congress of Mathematics, Budapest, July 1996, Progress in Mathematics, 169, Birkhäuser Verlag, Basel, 276–311.
|