• Previous Article
    Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions
  • MCRF Home
  • This Issue
  • Next Article
    Optimal control problems governed by 1-D Kobayashi–Warren–Carter type systems
June  2021, 11(2): 291-312. doi: 10.3934/mcrf.2020037

A stochastic optimal control problem governed by SPDEs via a spatial-temporal interaction operator

1. 

Department of Mathematics, Sichuan University, Chengdu 610064, China

2. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 610074, China, and, Department of Mathematics, Sichuan University, Chengdu 610064, China

* Corresponding author

Received  March 2020 Revised  June 2020 Published  August 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (11471230, 11671282)

In this paper, we first introduce a new spatial-temporal interaction operator to describe the space-time dependent phenomena. Then we consider the stochastic optimal control of a new system governed by a stochastic partial differential equation with the spatial-temporal interaction operator. To solve such a stochastic optimal control problem, we derive an adjoint backward stochastic partial differential equation with spatial-temporal dependence by defining a Hamiltonian functional, and give both the sufficient and necessary (Pontryagin-Bismut-Bensoussan type) maximum principles. Moreover, the existence and uniqueness of solutions are proved for the corresponding adjoint backward stochastic partial differential equations. Finally, our results are applied to study the population growth problems with the space-time dependent phenomena.

Citation: Zhun Gou, Nan-jing Huang, Ming-hui Wang, Yao-jia Zhang. A stochastic optimal control problem governed by SPDEs via a spatial-temporal interaction operator. Mathematical Control & Related Fields, 2021, 11 (2) : 291-312. doi: 10.3934/mcrf.2020037
References:
[1]

N. Agram, A. Hilbert and B. Øksendal, SPDEs with space-mean dynamics, preprint, arXiv: 1807.07303, 2019. Google Scholar

[2]

N. AgramA. Hilbert and B. Øksendal, Singular control of SPDEs with space-mean dynamics, Mathematical Control and Related Fields, 10 (2020), 425-441.  doi: 10.3934/mcrf.2020004.  Google Scholar

[3]

N. Agram and B. Øksendal, Stochastic control of memory mean-field processes, Applied Mathematics & Optimization, 79 (2019), 181-204.  doi: 10.1007/s00245-017-9425-1.  Google Scholar

[4]

A. Basse-O'ConnorM. S. NielsenJ. Pedersen and V. Rohde, Multivariate stochastic delay differential equations and CAR representations of CARMA processes, Stochastic Processes and Their Applications, 129 (2019), 4119-4143.  doi: 10.1016/j.spa.2018.11.011.  Google Scholar

[5] A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511526503.  Google Scholar
[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2nd edition, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[7]

G. Da Prato and J. Zabczyk, Stochastic evolution equations, Mathematical biosciences, 15 (1972), 287-316.  doi: 10.1016/0025-5564(72)90039-9.  Google Scholar

[8]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM Journal on Control and Optimization, 51 (2013), 4343-4362.  doi: 10.1137/120882433.  Google Scholar

[9]

R. DumitrescuB. Øksendal and A. Sulem, Stochastic control for mean-field stochastic partial differential equations with jumps, Journal of Optimization Theory and Applications, 176 (2018), 559-584.  doi: 10.1007/s10957-018-1243-3.  Google Scholar

[10]

S. N. EvansP. L. RalphS. J. Schreibe and A. Sen, Stochastic population growth in spatially heterogeneous environments, Journal of Mathematical Biology, 66 (2013), 423-476.  doi: 10.1007/s00285-012-0514-0.  Google Scholar

[11]

H. Frankowska and Q. Lü, First and second order necessary optimality conditions for controlled stochastic evolution equations with control and state constraints, Journal of Differential Equations, 268 (2020), 2949-3015.  doi: 10.1016/j.jde.2019.09.045.  Google Scholar

[12]

M. Fuhrman and C. Orrieri, Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift, SIAM Journal on Control and Optimization, 54 (2016), 341-371.  doi: 10.1137/15M1012888.  Google Scholar

[13]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science & Business Media, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.  Google Scholar

[14]

A. HeningD. H. Nguyen and G. Yin, Stochastic population growth in spatially heterogeneous environments: the density-dependent case, Journal of Mathematical Biology, 76 (2018), 697-754.  doi: 10.1007/s00285-017-1153-2.  Google Scholar

[15]

H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic Partial Differential Equations: A Modeling, White Noise Approach, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4684-9215-6.  Google Scholar

[16]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics and Stochastic Reports, 33 (1990), 159-180.  doi: 10.1080/17442509008833671.  Google Scholar

[17]

V. L. Kocic, Generalized attenuant cycles in some discrete periodically forced delay population models, Journal of Difference Equations and Applications, 16 (2010), 1141-1149.  doi: 10.1080/10236190902766850.  Google Scholar

[18]

S. LenhartX. TangJ. Xiong and J-m. Yong, Controlled stochastic partial differential equations for rabbits on a grassland, Acta Mathematicae Applicatae Sinica, English Series, 36 (2020), 262-282.  doi: 10.1007/s10255-020-0925-4.  Google Scholar

[19]

S. LenhartJ. Xiong and J. Yong, Optimal controls for stochastic partial differential equations with an application in population modeling, SIAM Journal on Control and Optimization, 54 (2016), 495-535.  doi: 10.1137/15M1010233.  Google Scholar

[20]

J. Liu and C. A. Tudor, Analysis of the density of the solution to a semilinear SPDE with fractional noise, Stochastics, 88 (2016), 959-979.  doi: 10.1080/17442508.2016.1177056.  Google Scholar

[21]

Q. Lü, Stochastic well-posed systems and well-posedness of some stochastic partial differential equations with boundary control and observation, SIAM Journal on Control and Optimizatio, 53 (2015), 3457-3482.  doi: 10.1137/151002605.  Google Scholar

[22]

Q. Lü and X. Zhang, Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application, Mathematical Control and Related Fields, 8 (2018), 337-381.  doi: 10.3934/mcrf.2018014.  Google Scholar

[23]

Q. Lü and X. Zhang, Transposition method for backward stochastic evolution equations revisited, and its application, Mathematical Control and Related Fields, 5 (2015), 529-555.  doi: 10.3934/mcrf.2015.5.529.  Google Scholar

[24]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE with applications, Stochastic Processes and Their Applications, 70 (1997), 59-84.  doi: 10.1016/S0304-4149(97)00057-4.  Google Scholar

[25]

Q. Meng and Y. Shen, Optimal control of mean-field jump-diffusion systems with delay: A stochastic maximum principle approach, Journal of Computational and Applied Mathematics, 279 (2015), 13-30.  doi: 10.1016/j.cam.2014.10.011.  Google Scholar

[26]

J. B. Mijena and E. Nane, Intermittence and space-time fractional stochastic partial differential equations, Potential Analysis, 44 (2016), 295-312.  doi: 10.1007/s11118-015-9512-3.  Google Scholar

[27]

S. E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications, in Stochastic Analysis and Related Topics Ⅵ (eds. Decreusefond L., Øksendal B., Gjerde J. and Üstünel A. S.), Birkhäuser, Boston, (1998), 1–77.  Google Scholar

[28]

F. Z. Mokkedem and X. Fu, Optimal control problems for a semilinear evolution system with infinite delay, Applied Mathematics & Optimization, 79 (2019), 41-67.  doi: 10.1007/s00245-017-9420-6.  Google Scholar

[29]

B. Øksendal, Optimal control of stochastic partial differential equations, Stochastic Analysis and Applications, 23 (2005), 165-179.  doi: 10.1081/SAP-200044467.  Google Scholar

[30]

B. ØksendalA. Sulem and T. Zhang, Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Advances in Applied Probability, 43 (2011), 572-596.  doi: 10.1239/aap/1308662493.  Google Scholar

[31]

B. Øksendal, A. Sulem and T. Zhang, Optimal partial information control of SPDEs with delay and time-advanced backward SPDEs, in Stochastic Analysis and Applications to Finance: Essays in Honour of Jia-an Yan (eds. T. Zhang and X. Zhou), World Scientific Publishing, Hackensack, (2012), 355–383. doi: 10.1142/9789814383585_0018.  Google Scholar

[32]

T. Reichenbach, M. Mobilia and E. Frey, Noise and correlations in a spatial population model with cyclic competition, Physical Review Letters, 99 (2007), 238105. doi: 10.1103/PhysRevLett.99.238105.  Google Scholar

[33]

S. J. Schreiber and J. O. Lloyd-Smith, Invasion dynamics in spatially heterogeneous environments, Applied Mathematics & Optimization, 174 (2009), 490-505.  doi: 10.1086/605405.  Google Scholar

[34] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar
[35]

H.-N. Wu and X.-M. Zhang, Boundary static output feedback control for nonlinear stochastic parabolic partial differential systems via fuzzy-model-based approach, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2941698. Google Scholar

show all references

References:
[1]

N. Agram, A. Hilbert and B. Øksendal, SPDEs with space-mean dynamics, preprint, arXiv: 1807.07303, 2019. Google Scholar

[2]

N. AgramA. Hilbert and B. Øksendal, Singular control of SPDEs with space-mean dynamics, Mathematical Control and Related Fields, 10 (2020), 425-441.  doi: 10.3934/mcrf.2020004.  Google Scholar

[3]

N. Agram and B. Øksendal, Stochastic control of memory mean-field processes, Applied Mathematics & Optimization, 79 (2019), 181-204.  doi: 10.1007/s00245-017-9425-1.  Google Scholar

[4]

A. Basse-O'ConnorM. S. NielsenJ. Pedersen and V. Rohde, Multivariate stochastic delay differential equations and CAR representations of CARMA processes, Stochastic Processes and Their Applications, 129 (2019), 4119-4143.  doi: 10.1016/j.spa.2018.11.011.  Google Scholar

[5] A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511526503.  Google Scholar
[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2nd edition, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[7]

G. Da Prato and J. Zabczyk, Stochastic evolution equations, Mathematical biosciences, 15 (1972), 287-316.  doi: 10.1016/0025-5564(72)90039-9.  Google Scholar

[8]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM Journal on Control and Optimization, 51 (2013), 4343-4362.  doi: 10.1137/120882433.  Google Scholar

[9]

R. DumitrescuB. Øksendal and A. Sulem, Stochastic control for mean-field stochastic partial differential equations with jumps, Journal of Optimization Theory and Applications, 176 (2018), 559-584.  doi: 10.1007/s10957-018-1243-3.  Google Scholar

[10]

S. N. EvansP. L. RalphS. J. Schreibe and A. Sen, Stochastic population growth in spatially heterogeneous environments, Journal of Mathematical Biology, 66 (2013), 423-476.  doi: 10.1007/s00285-012-0514-0.  Google Scholar

[11]

H. Frankowska and Q. Lü, First and second order necessary optimality conditions for controlled stochastic evolution equations with control and state constraints, Journal of Differential Equations, 268 (2020), 2949-3015.  doi: 10.1016/j.jde.2019.09.045.  Google Scholar

[12]

M. Fuhrman and C. Orrieri, Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift, SIAM Journal on Control and Optimization, 54 (2016), 341-371.  doi: 10.1137/15M1012888.  Google Scholar

[13]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science & Business Media, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.  Google Scholar

[14]

A. HeningD. H. Nguyen and G. Yin, Stochastic population growth in spatially heterogeneous environments: the density-dependent case, Journal of Mathematical Biology, 76 (2018), 697-754.  doi: 10.1007/s00285-017-1153-2.  Google Scholar

[15]

H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic Partial Differential Equations: A Modeling, White Noise Approach, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4684-9215-6.  Google Scholar

[16]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics and Stochastic Reports, 33 (1990), 159-180.  doi: 10.1080/17442509008833671.  Google Scholar

[17]

V. L. Kocic, Generalized attenuant cycles in some discrete periodically forced delay population models, Journal of Difference Equations and Applications, 16 (2010), 1141-1149.  doi: 10.1080/10236190902766850.  Google Scholar

[18]

S. LenhartX. TangJ. Xiong and J-m. Yong, Controlled stochastic partial differential equations for rabbits on a grassland, Acta Mathematicae Applicatae Sinica, English Series, 36 (2020), 262-282.  doi: 10.1007/s10255-020-0925-4.  Google Scholar

[19]

S. LenhartJ. Xiong and J. Yong, Optimal controls for stochastic partial differential equations with an application in population modeling, SIAM Journal on Control and Optimization, 54 (2016), 495-535.  doi: 10.1137/15M1010233.  Google Scholar

[20]

J. Liu and C. A. Tudor, Analysis of the density of the solution to a semilinear SPDE with fractional noise, Stochastics, 88 (2016), 959-979.  doi: 10.1080/17442508.2016.1177056.  Google Scholar

[21]

Q. Lü, Stochastic well-posed systems and well-posedness of some stochastic partial differential equations with boundary control and observation, SIAM Journal on Control and Optimizatio, 53 (2015), 3457-3482.  doi: 10.1137/151002605.  Google Scholar

[22]

Q. Lü and X. Zhang, Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application, Mathematical Control and Related Fields, 8 (2018), 337-381.  doi: 10.3934/mcrf.2018014.  Google Scholar

[23]

Q. Lü and X. Zhang, Transposition method for backward stochastic evolution equations revisited, and its application, Mathematical Control and Related Fields, 5 (2015), 529-555.  doi: 10.3934/mcrf.2015.5.529.  Google Scholar

[24]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE with applications, Stochastic Processes and Their Applications, 70 (1997), 59-84.  doi: 10.1016/S0304-4149(97)00057-4.  Google Scholar

[25]

Q. Meng and Y. Shen, Optimal control of mean-field jump-diffusion systems with delay: A stochastic maximum principle approach, Journal of Computational and Applied Mathematics, 279 (2015), 13-30.  doi: 10.1016/j.cam.2014.10.011.  Google Scholar

[26]

J. B. Mijena and E. Nane, Intermittence and space-time fractional stochastic partial differential equations, Potential Analysis, 44 (2016), 295-312.  doi: 10.1007/s11118-015-9512-3.  Google Scholar

[27]

S. E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications, in Stochastic Analysis and Related Topics Ⅵ (eds. Decreusefond L., Øksendal B., Gjerde J. and Üstünel A. S.), Birkhäuser, Boston, (1998), 1–77.  Google Scholar

[28]

F. Z. Mokkedem and X. Fu, Optimal control problems for a semilinear evolution system with infinite delay, Applied Mathematics & Optimization, 79 (2019), 41-67.  doi: 10.1007/s00245-017-9420-6.  Google Scholar

[29]

B. Øksendal, Optimal control of stochastic partial differential equations, Stochastic Analysis and Applications, 23 (2005), 165-179.  doi: 10.1081/SAP-200044467.  Google Scholar

[30]

B. ØksendalA. Sulem and T. Zhang, Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Advances in Applied Probability, 43 (2011), 572-596.  doi: 10.1239/aap/1308662493.  Google Scholar

[31]

B. Øksendal, A. Sulem and T. Zhang, Optimal partial information control of SPDEs with delay and time-advanced backward SPDEs, in Stochastic Analysis and Applications to Finance: Essays in Honour of Jia-an Yan (eds. T. Zhang and X. Zhou), World Scientific Publishing, Hackensack, (2012), 355–383. doi: 10.1142/9789814383585_0018.  Google Scholar

[32]

T. Reichenbach, M. Mobilia and E. Frey, Noise and correlations in a spatial population model with cyclic competition, Physical Review Letters, 99 (2007), 238105. doi: 10.1103/PhysRevLett.99.238105.  Google Scholar

[33]

S. J. Schreiber and J. O. Lloyd-Smith, Invasion dynamics in spatially heterogeneous environments, Applied Mathematics & Optimization, 174 (2009), 490-505.  doi: 10.1086/605405.  Google Scholar

[34] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar
[35]

H.-N. Wu and X.-M. Zhang, Boundary static output feedback control for nonlinear stochastic parabolic partial differential systems via fuzzy-model-based approach, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2941698. Google Scholar

[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[6]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[7]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[8]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[11]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[12]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[13]

Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362

[14]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[15]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[16]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[17]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[18]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[19]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[20]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (103)
  • HTML views (262)
  • Cited by (0)

[Back to Top]